Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-12-01T06:25:30.338Z Has data issue: false hasContentIssue false

Intermittency in the velocity distribution of heavy particles in turbulence

Published online by Cambridge University Press:  08 March 2010

J. BEC*
Affiliation:
Université de Nice-Sophia Antipolis, CNRS, Observatoire de la Côte d'Azur, Laboratoire Cassiopée, Bd. de l'Observatoire, 06300 Nice, France
L. BIFERALE
Affiliation:
Department of Physics and INFN, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
M. CENCINI
Affiliation:
INFM-CNR, SMC Dept. of Physics, Università ‘La Sapienza’, P.zzle A. Moro 2, and ISC-CNR, Via dei Taurini 19, 00185 Roma, Italy
A. S. LANOTTE
Affiliation:
ISAC-CNR, Via Fosso del Cavaliere 100, 00133 Rome and INFN, Sez. Lecce, 73100 Lecce, Italy
F. TOSCHI
Affiliation:
Department of Physics and Department of Mathematics and Computer Science, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands Istituto per le Applicazioni del Calcolo CNR, Viale del Policlinico 137, 00161 Roma, Italy
*
Email address for correspondence: [email protected]

Abstract

The statistics of velocity differences between pairs of heavy inertial point particles suspended in an incompressible turbulent flow is studied and found to be extremely intermittent. The problem is particularly relevant to the estimation of the efficiency of collisions among heavy particles in turbulence. We found that when particles are separated by distances within the dissipative subrange, the competition between regions with quiet regular velocity distributions and regions where very close particles have very different velocities (caustics) leads to a quasi bi-fractal behaviour of the particle velocity structure functions. Contrastingly, we show that for particles separated by inertial-range distances, the velocity-difference statistics can be characterized in terms of a local roughness exponent, which is a function of the scale-dependent particle Stokes number only. Results are obtained from high-resolution direct numerical simulations up to 20483 collocation points and with millions of particles for each Stokes number.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abrahamson, J. 1975 Collision rates of small particles in a vigorously turbulent fluid. Chem. Engng Sci. 30, 13711379.Google Scholar
Arnold, V. I., Shandarin, S. F. & Zel'dovich, Ya. B. 1982 The large scale structure of the universe I. General properties. One-and two-dimensional models. Geophys. Astrophys. Fluid Dyn. 20, 111.Google Scholar
Ayala, O., Rosa, B., Wang, L.-P. & Grabowski, W. W. 2008 Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 1. Results from direct numerical simulation. New J. Phys. 10, 075015.CrossRefGoogle Scholar
Bec, J., Biferale, L., Boffetta, G., Celani, A., Cencini, M., Lanotte, A. S., Musacchio, S. & Toschi, F. 2006 Acceleration statistics of heavy particles in turbulence. J. Fluid Mech. 550, 349.Google Scholar
Bec, J., Biferale, L., Boffetta, G., Cencini, M., Lanotte, A. S., Musacchio, S. & Toschi, F. 2007 Heavy particle concentration in turbulence at dissipative and inertial scales. Phys. Rev. Lett. 98, 084502.Google Scholar
Bec, J., Biferale, L., Lanotte, A. S., Scagliarini, A. & Toschi, F. 2010. Turbulent pair dispersion of inertial particles. J. Fluid Mech. (in press).Google Scholar
Bec, J., Celani, A., Cencini, M. & Musacchio, S. 2005 Clustering and collisions of heavy particles in random smooth flows. Phys. Fluids 17, 073301.Google Scholar
Bec, J., Cencini, M., Hillerbrand, R. & Turitsyn, K. 2008 Stochastic suspensions of heavy particles. Physica D 237, 2037.Google Scholar
Bec, J. & Khanin, K. 2007 Burgers turbulence. Phys. Rep. 447, 1.Google Scholar
Biferale, L., Cencini, M., Lanotte, A. S. & Sbragaglia, M. 2004 Anomalous scaling and universality in hydrodynamic systems with power-law forcing. New J. Phys. 6, 37.Google Scholar
Celani, A., Lanotte, A. S., Mazzino, A. & Vergassola, M. 2000 Universality and saturation of intermittency in passive scalar turbulence. Phys. Rev. Lett. 84, 2385.CrossRefGoogle ScholarPubMed
Chen, S., Doolen, G. D., Kraichnan, R. H. & She, Z.-S. 1993 On statistical correlations between velocity increments and locally averaged dissipation in homogeneous turbulence. Phys. Fluids A 5, 458.CrossRefGoogle Scholar
Derevyanko, S., Falkovich, G. & Turitsyn, S. 2008 Evolution of non-uniformly seeded warm clouds in idealized turbulent conditions. New J. Phys. 10, 075019.Google Scholar
Derevyanko, S., Falkovich, G., Turitsyn, K. & Turitsyn, S. 2007 Explosive growth of inhomogeneities in the distribution of droplets in a turbulent air. J. Turbul. 8, 1.Google Scholar
Falkovich, G., Fouxon, A. & Stepanov, M. 2002 Acceleration of rain initiation by cloud turbulence. Nature 419, 151.CrossRefGoogle ScholarPubMed
Falkovich, G. & Pumir, A. 2007 Sling effect in collisions of water droplets in turbulent clouds. J. Atmos. Sci. 64, 4497.Google Scholar
Goto, S. & Vassilicos, J.-C. 2008 Sweep-stick mechanism of heavy particle clustering in fluid turbulence. Phys. Rev. Lett. 100, 054503.CrossRefGoogle ScholarPubMed
Gotoh, T., Fukayama, D. & Nakano, T. 2002 Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulations. Phys. Fluids 14, 1065.Google Scholar
Grassberger, P. 1983 Generalized dimensions of strange attractors. Phys. Lett. A 97, 227.Google Scholar
Ishihara, T., Gotoh, T. & Kaneda, Y. 2009 Study of high-Reynolds number isotropic turbulence by direct numerical simulation. Annu. Rev. Fluid Mech. 41 165.CrossRefGoogle Scholar
Mitra, D., Bec, J., Pandit, R. & Frisch, U. 2005 Is multiscaling an artifact in the stochastically forced Burgers equation? Phys. Rev. Lett. 94, 194501.CrossRefGoogle ScholarPubMed
Olla, P. 2008 Clustering and collision of inertial particles in random velocity fields. Phys. Rev. E 77, 065301.Google ScholarPubMed
Reade, W. C. & Collins, L. R. 2000 A numerical study of the particle size distribution of an aerosol undergoing turbulent coagulation. Phys. Fluids 12, 2530.CrossRefGoogle Scholar
Shaw, R. A. 2003. Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech. 35, 183.Google Scholar
Sundaram, S. & Collins, L. R. 1997 Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations. J. Fluid Mech. 335, 75.CrossRefGoogle Scholar
Toschi, F. & Bodenschatz, E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375.CrossRefGoogle Scholar
Wilkinson, M. & Mehlig, B. 2005 Caustics in turbulent aerosols. Europhys. Lett. 71, 186.CrossRefGoogle Scholar
Wilkinson, M., Mehlig, B. & Bezuglyy, V. 2006 Caustic activation of rain showers. Phys. Rev. Lett. 97, 048501.Google Scholar
Xue, Y., Wang, L.-P. & Grabowski, W. 2008 Growth of cloud droplets by turbulent collisioncoalescence. J. Atmos. Sci. 65, 331.Google Scholar
Yeung, P. K., Pope, S. B. & Sawford, B. L. 2006 Reynolds number dependence of Lagrangian statistics in large numerical simulations of isotropic turbulence. J. Turbul. 7, N58.Google Scholar
Zhou, Y., Wexler, A. S. & Wang, L.-P. 1998 On the collision rate of small particles in isotropic turbulence. II. Finite inertia case. Phys. Fluids 10, 1206.Google Scholar
Zhou, Y., Wexler, A. & Wang, L.-P. 2001 Modeling turbulent collision of bidisperse inertial particles. J. Fluid Mech. 433, 77.Google Scholar