Published online by Cambridge University Press: 20 April 2006
An analysis is presented which describes the slow-time evolution of an internal gravity wave in an arbitrarily specified stratification. The weakly nonlinear description of a single-wave mode, governed by the nonlinear Schrödinger equation, breaks down when certain resonant conditions are satisfied. One such condition occurs when the group velocity of the wavetrain is equal to the phase velocity of a higher-mode long wave of the system. The resonant interaction occurs on a faster time scale and is described by a coupled pair of nonlinear partial differential equations governing the evolution of both the short-wave and the long-wave modes. This long-wave/short-wave interaction is pursued further in an experimental investigation by measuring the modal interchange of energy between two internal waves of disparate length and time scales. The resulting data are compared with numerical solutions of the long-wave/short-wave resonant interaction equations. In general, the agreement between the theory and the experiment is reasonably good in the range of operating conditions for which the theory is valid.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.