Article contents
The interacting boundary-layer flow due to a vortex approaching a cylinder
Published online by Cambridge University Press: 10 September 1997
Abstract
In this paper the solution to the three-dimensional and unsteady interacting boundary-layer equations for a vortex approaching a cylinder is calculated. The flow is three-dimensional and unsteady. The purpose of this paper is to enhance the understanding of the structure in three-dimensional unsteady boundary-layer separation commonly observed in a high-Reynolds-number flow. The short length scales associated with the boundary-layer eruption process are resolved through an efficient and effective moving adaptive grid procedure. The results of this work suggest that like its two-dimensional counterpart, the three-dimensional unsteady interacting boundary layer also terminates in a singularity at a finite time. Furthermore, the numerical calculations confirm the theoretical analysis of the singular structure in two dimensions for the interacting boundary layer due to Smith (1988).
- Type
- Research Article
- Information
- Copyright
- © 1997 Cambridge University Press
- 7
- Cited by