Published online by Cambridge University Press: 03 December 2018
Of the canonical flow instabilities (Kelvin–Helmholtz, Holmboe-wave and Taylor–Caulfield) of stratified shear flow, the Taylor–Caulfield instability (TCI) has received relatively little attention, and forms the focus of the current study. First, a diagnostic of the linear instability dynamics is developed that exploits the net pseudomomentum to distinguish TCI from the other two instabilities for any given flow profile. Second, the nonlinear dynamics of TCI is studied across its range of unstable horizontal wavenumbers and bulk Richardson numbers using numerical simulation. At small bulk Richardson numbers, a cascade of billow structures of sequentially smaller size may form. For large bulk Richardson numbers, the primary nonlinear travelling waves formed by the linear instability break down via a small-scale, Kelvin–Helmholtz-like roll-up mechanism with an associated large amount of mixing. In all cases, secondary parasitic nonlinear Holmboe waves appear at late times for high Prandtl number. Third, a nonlinear diagnostic is proposed to distinguish between the saturated states of the three canonical instabilities based on their distinctive density–streamfunction and generalised vorticity–streamfunction relations.
Movie of the flow evolution of the simulations of Group 1 (k,J) = (0.8,0.14) showing the density field next to the vorticity field for the (Re,Pr) = (300 000,0.6), first row, (Re,Pr) = (180 000,1), second row, (Re,Pr) = (60 000,3), third row, and (Re,Pr) = (20 000,10), forth row. Timer shows advective time units.
Movie of the flow evolution of the simulations of Group 2 (k,J) = (4/3,0.14) showing the density field next to the vorticity field for the (Re,Pr) = (300 000,0.6), first row, (Re,Pr) = (180 000,1), second row, (Re,Pr) = (60 000,3), third row, and (Re,Pr) = (20 000,10), forth row. Timer shows advective time units.
Movie of the flow evolution of the simulations of Group 3 (k,J) = (4/3,0.23) showing the density field next to the vorticity field for the (Re,Pr) = (300 000,0.6), first row, (Re,Pr) = (180 000,1), second row, (Re,Pr) = (60 000,3), third row, and (Re,Pr) = (20 000,10), forth row. Timer shows advective time units.
Movie of the flow evolution of the simulations of Group 4 (k,J) = (4/3,0.3) showing the density field next to the vorticity field for the (Re,Pr) = (300 000,0.6), first row, (Re,Pr) = (180 000,1), second row, (Re,Pr) = (60 000,3), third row, and (Re,Pr) = (20 000,10), forth row. Timer shows advective time units.
Movie of the flow evolution of the simulations of Group 5 (k,J) = (2,0.3) showing the density field next to the vorticity field for the (Re,Pr) = (300 000,0.6), top left, (Re,Pr) = (180 000,1), top right, (Re,Pr) = (60 000,3), bottom left, and (Re,Pr) = (20 000,10), bottom right. Timer shows advective time units.
Movie of the flow evolution of the simulations of Group 6 (k,J) = (4,0.5) showing the density field next to the vorticity field for the (Re,Pr) = (300 000,0.6), top left, (Re,Pr) = (180 000,1), top right, (Re,Pr) = (60 000,3), bottom left, and (Re,Pr) = (20 000,10), bottom right. Timer shows advective time units.