Published online by Cambridge University Press: 28 March 2006
Approximate equations of motion, continuity and mass transport are given for a viscous liquid of variable density moving very slowly between vertical and impermeable parallel planes. These equations are used to calculate approximate stability criteria when the liquid is at rest under a vertical density gradient. The results are applicable to the problem of the stability of a viscous liquid of variable density to two-dimensional disturbances in a porous medium.
An exact stability analysis for the liquid between parallel planes is also given, and expansions in powers of the disturbance wave-number are obtained for the critical Rayleigh number at neutral stability. The previous approximate results are found to correspond to the leading terms of the series expansions. For the most unstable type of disturbance, the velocity distribution closely resembles plane Poiseuille flow, which was the form assumed in the approximate equations.
An asymptotic expansion is derived for the critical Rayleigh number at neutral stability in a long vertical channel, or duct, the cross-section of which is a thin rectangle. The typical neutral disturbance possesses a ‘boundary layer’ at each end of the cell cross-section, and this has a small stabilizing effect.
The critical Rayleigh number for a long vertical channel of rectangular cross-section is found experimentally by comparing the density gradient of the liquid in the channel at neutral stability with the corresponding density gradient in a vertical capillary tube. There is better agreement with the exact theory than with the approximate theory, the experimental result being about 4% higher than the value predicted by the ‘exact’ asymptotic expression, and about 10% higher than the value predicted by the simple approximate theory.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.