Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-19T06:25:08.640Z Has data issue: false hasContentIssue false

Instability of a viscous liquid jet surrounded by a viscous gas in a vertical pipe

Published online by Cambridge University Press:  26 April 2006

S. P. Lin
Affiliation:
Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, NY 13676, USA
E. A. Ibrahim
Affiliation:
Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, NY 13676, USA

Abstract

The instability of a cylindrical liquid jet encapsulated by a viscous gas in a pipe is analysed in a parameter space spanned by the Reynolds number, the Froude number, the Weber number, the density ratio, the viscosity ratio, and the diameter ratio. A convergent solution of the problem is constructed by a Galerkin projection with two orthogonal sets of functions. Two distinctively different modes of instability are obtained. The first is the Rayleigh mode which tends to break up the jet into drops of diameter comparable with the jet diameter. The amplification rate of the disturbance belonging to this mode depends weakly on all parameters except the Weber number which represents the ratio of the surface tension force to the inertia force at the interface. The mechanism of the instability remains that of capillary pinching even in the presence of a viscous gas and gravity. However, the surface tension is stabilizing in the other mode termed the Taylor mode. The Taylor mode instability is due to the pressure and shear fluctuations at the interface. This mode tends to produce droplets of diameters much smaller than that of the jet. It is shown that the former mode appears when the Weber number is much larger than the gas to liquid density ratio. When this ratio is of order one, the instability can be due to either modes depending on the values of the rest of the parameters. When the density ratio is much larger than the Weber number, Taylor's atomization mode replaces the Rayleigh mode.

Type
Research Article
Copyright
© 1990 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blennerhassett, P. J.: 1980 Phil. Trans. R. Soc. Lond. A 298, 451.
Chandrasekhar, S.: 1961 Hydrodynamic and Hydromagnetic Stability, p. 537. Oxford University Press.
Chen, K., Bai, R. & Joseph, D. D., 1990 J. Fluid Mech. 214, 251.
Donnelly, R. J. & Glaberson, W., 1966 Proc. R. Soc. A A290, 547.
Drazin, P. G. & Reid, W. H., 1981 Hydrodynamic Stability. Cambridge University Press.
Goedde, E. F. & Yuen, M. C., 1970 J. Fluid Mech. 40, 495.
Hinch, E. J.: 1984 J. Fluid Mech. 128, 507.
Hooper, A. P. & Boyd, W. G. C. 1987 J. Fluid Mech. 179, 201.
Hu, H. H. & Joseph, D. D., 1989 J. Fluid Mech. 205, 359.
Joseph, D. D., Renardy, M. & Renardy, Y., 1984 J. Fluid Mech. 141, 309.
Keller, J. B., Rubinow, S. I. & Tu, Y. O., 1972 Phys. Fluids 16, 2052.
Kelly, R. E., Goussis, D. A., Lin, S. P. & Hsu, F. K., 1989 Phys. Fluids A 12, 819.
Kaufman, L. C.: 1974 SIAM J. Num. Anal. 11, 997.
Muller, D. C.: 1956 Math. Tables Aids Comput. 10, 208.
Leib, S. J. & Goldstein, M. E., 1986a J. Fluid Mech. 168, 479.
Leib, S. J. & Goldstein, M. E., 1986b Phys. Fluids 29, 952.
Lin, S. P. & Creighton, B., 1990 J. Aero. Sci. Tech. 12 (3), (to appear).
Lin, S. P. & Kang, D. J., 1987 Phys. Fluids 30, 2000.
Lin, S. P. & Lian, Z. W., 1989 Phys. Fluids A 1, 490.
Lin, S. P. & Lian, Z. W., 1990 AIAA J. 28, 120.
Preziosi, L., Chen, K. & Joseph, D. D., 1989 J. Fluid Mech. 201, 323.
Rayleigh, Lord: 1879 Land. Math. Soc. 10, 361.
Reitz, R. D. & Bracco, F. V., 1982 Phys. Fluids 25, 1730.
Renardy, Y.: 1985 Phys. Fluids 28, 3441.
Smith, M. K.: 1989 Phys. Fluids A 1, 494.
Taylor, G. I.: 1963 The Scientific Papers of Sir Geoffrey Ingram Taylor, vol. 3, No. 25. Cambridge University Press.
Tomotika, S.: 1934 Proc. R. Soc. Lond. A 146, 501.
Yih, C. S.: 1967 J. Fluid Mech. 27, 337.