Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T16:13:34.457Z Has data issue: false hasContentIssue false

Instability and wave over-reflection in stably stratified shear flow

Published online by Cambridge University Press:  20 April 2006

Richard S. Lindzen
Affiliation:
Center for Meteorology and Physical Oceanography, M.I.T., Cambridge, MA
John W. Barker
Affiliation:
Department of Atmospheric Physics, Clarendon Laboratory, Oxford, England

Abstract

We reexamine the related problems of instability of parallel shear flows and over-reflection of internal waves at a critical level, concentrating on the stratified case. Our primary aim is to delineate the specific aspects of a flow that permit overreflection and instability. A related and partly realized aim is to develop a mechanistic ‘picture’ of how over-reflection and instability work. In the course of this study we have also uncovered some new results concerning the instability of stratified shear flows – showing how regions of enhanced static stability and enhanced damping can destabilize otherwise stable flows.

For the scattering of steady plane waves, we show that, of the conditions found by Lindzen & Tung (1978), in the unstratified case, only the existence of wave-propagation regions above and below the critical level is always necessary for over-reflection (at least in the absence of damping), although a trapping region around the critical level and a reflecting surface bounding the upper wave region may play crucial roles in some cases. Our results suggest that the role of the upper wave region may be to allow a wave flux through the critical level. Moreover, we show numerically that the effect of an upper wave region can be mimicked by a region of localized damping which leads to over-reflection as well.

We also consider an initial-value problem, using numerical methods. When a wave is incident on the incident level, the reflection and transmission coefficients grow smoothly to their final values. The rate of growth depends on the flow parameters, but there is some evidence to suggest there is a characteristic timescale involved that depends only on the shear (and not on wave travel time). This fits a mechanistic picture of over-reflection and instability that we describe, in which the essential part is a kinematic interaction between wave and mean flow at the critical level, depending only on shear.

Type
Research Article
Copyright
© 1985 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A. 1970 Handbood of Mathematical Functions. U.S. Dept of Commerce.
Boyd J. P.1983 J. Atmos. Sci. 40, 2304.
Bretherton F. P.1966a Q. J. R. Met. Soc. 92, 325.
Bretherton F. P.1966b Q. J. R. Met. Soc. 92, 466.
Booker, R. S. & Bretherton F. P.1967 J. Fluid Mech. 27, 513.
Brown, S. N. & Stewartson K.1980 J. Fluid Mech. 100, 811.
Case K.1960 Phys. Fluids 3, 149.
Eliassen, A. & Palm E.1960 Geofys. Publ. 22, 1.
Farrell B.1982 J. Atmos. Sci. 39, 1663.
Fjrtoft R.1950 Geofys. Publ. 17, 52.
Goldstein S.1931 Proc. R. Soc. Lond. A 132, 524.
Goldstein S.1938 Modern Developments in Fluid Dynamics, vol. 1. Clarendon.
Howard L. N.1961 J. Fluid Mech. 10, 509.
Hyman J. M.1979 Los Alamos Preprint LA-UR-79–837.
Jones W. L.1968 J. Fluid Mech. 34, 609.
Lin C.-C.1955 The Theory of Hydrodynamic Stability. Cambridge University Press.
Lin, C.-C. & Lau Y. Y.1979 Stud. Appl. Maths 60, 97.
Lindzen R. S.1974 J. Atmos. Sci. 31, 1507.
Lindzen R. S., Farrell, B. & Tung K.-K.1980 J. Atmos. Sci. 37, 44.
Lindzen, R. S. & Rosenthal A. J.1976 J. Geophys. Res. 81, 1561.
Lindzen, R. S. & Rosenthal A. J.1981 J. Atmos. Sci. 38, 619.
Lindzen, R. S. & Rosenthal A. J.1983 J. Atmos. Sci. 40, 530.
Lindzen, R. S. & Tung K.-K.1978 J. Atmos. Sci. 35, 1626.
Mcintyre, M. E. & Weissman M. A.1978 J. Atmos. Sci. 35, 1190.
Miles J. W.1961 J. Fluid Mech. 10, 496.
Orr W. Mcf.1907 Proc. R. Irish Acad. 27, 9.
Platzman G. W.1952 J. Met. 9, 347.
Rayleigh Lord1980 In Scientific Papers, vol. 1, p. 474. Cambridge University Press.
Rosenthal A. J.1981 Gravity wave and Kelvin—Helmholtz instabilities in stratified shear flows. Ph.D. thesis, Harvard University.
Rosenthal, A. J. & Lindzen R. S.1983a J. Atmos. Sci. 40, 509.
Rosenthal, A. J. & Lindzen R. S.1983b J. Atmos. Sci. 40, 521.
Synge J. L.1933 Trans. R. Soc. Can. (3) 27, 1.
Tai C.-K.1983 Dyn. Atmos. Oceans 7, 147.
Taylor G. I.1915 Phil. Trans. R. Soc. Lond. A 215, 1.
Taylor G. I.1931 Proc. R. Soc. Lond. A 132, 499.