Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-12-01T04:45:04.407Z Has data issue: false hasContentIssue false

Instability and transition mechanisms induced by skewed roughness elements in a high-speed laminar boundary layer

Published online by Cambridge University Press:  20 September 2016

Gordon Groskopf
Affiliation:
Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, 70550 Stuttgart, Germany
Markus J. Kloker*
Affiliation:
Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, 70550 Stuttgart, Germany
*
Email address for correspondence: [email protected]

Abstract

The disturbance evolution in a Mach-4.8 zero-pressure-gradient flat-plate boundary-layer flow altered by discrete three-dimensional roughness elements is investigated including a laminar breakdown scenario. Direct numerical simulation (DNS), as well as the biglobal linear stability theory based on two-dimensional eigenfunctions in flow cross-sections, are applied. Roughness elements with high ratios of spanwise width to streamwise length are compared at varying height and skewing angles with respect to the oncoming flow. For an oblique roughness, the element’s height is varied between 27 % and 68 % of the undisturbed boundary-layer thickness. Compared to a symmetric roughness element an obliquely placed element generates a more pronounced low-speed streak in the roughness wake. The linear stability analysis reveals the occurrence of eigenmodes that can be associated with the first and second modes in the flat-plate flow. At identical roughness height, larger amplification is found for the eigenmodes of the oblique set-up. The results are confirmed by unsteady DNS showing very good agreement with stability theory; transient-growth behaviour in the near wake of the roughness is of minor importance. The comparison of the results gained for adiabatic wind-tunnel flow conditions with those for atmospheric-flight conditions with wall cooling reveals significant differences in the wake vortex system with subsequent impact on the stability properties of the flow. The hot-flow cases are less unstable at identical roughness Reynolds numbers. A variation of the wall cooling shows that the roughness-wake first- and second-mode behaviour is similar to that of the flat-plate flow: wall cooling stabilizes the first-mode and destabilizes the second-mode instabilities of the roughness wake.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, P., Brandt, L., Bottaro, A. & Henningson, D. S. 2001 On the breakdown of boundary layer streaks. J. Fluid Mech. 428, 2960.Google Scholar
Babucke, A., Kloker, M. J. & Rist, U. 2007 DNS of a plane mixing layer for the investigation of sound generation mechanisms. Comput. Fluids 37, 360368.CrossRefGoogle Scholar
Babucke, A., Linn, J., Kloker, M. J. & Rist, U. 2006 Direct numerical simulation of shear flow phenomena on parallel vector computers. In High Performance Computing on Vector Systems, Proceedings of the High Performance Computing Center Stuttgart, March 2005 (ed. Resch, M.), pp. 229247. Springer.Google Scholar
Bartkowicz, M. D., Subbareddy, P. K. & Candler, G. V.2010 Numerical simulations of roughness induced instability in the Purdue Mach 6 wind tunnel. AIAA Paper 2010-4723.CrossRefGoogle Scholar
Bernardini, M., Pirozzoli, S. & Orlandi, P. 2012 Compressibility effects on roughness-induced boundary layer transition. Intl J. Heat Fluid Flow 35, 4551.Google Scholar
Bernardini, M., Pirozzoli, S., Orlandi, P. & Lele, S. K. 2014 Parametrization of boundary-layer transition induced by isolated roughness elements. AIAA J. 52 (10), 22612269.CrossRefGoogle Scholar
Berry, S. A. & Horvath, T. J.2007 Discrete roughness transition for hypersonic flight vehicles. AIAA Paper 2007-0307.CrossRefGoogle Scholar
Bertolotti, F. B. 1998 The influence of rotational and vibrational energy relaxation on boundary-layer stability. J. Fluid Mech. 372, 93118.CrossRefGoogle Scholar
Bonfigli, G. & Kloker, M. J. 2007 Secondary instability of crossflow vortices: validation of the stability theory by direct numerical simulation. J. Fluid Mech. 583, 229272.Google Scholar
Casper, K. M., Wheaton, B. M., Johnson, H. B. & Schneider, S. P.2008 Effect of freestream noise on roughness-induced transition at Mach 6. AIAA Paper 2008-4291.CrossRefGoogle Scholar
Choudhari, M., Li, F., Chang, C.-L., Norris, A. & Edwards, J. 2012 Wake instabilities behind discrete roughness elements in high speed boundary layers. In RTO-MP-AVT-200 Meeting Proceedings, NATO, pp. 28-1–28-16.Google Scholar
DeTullio, N., Paredes, P., Sandham, N. D. & Theofilis, V. 2013 Laminar-turbulent transition induced by a discrete roughness element in a supersonic boundary layer. J. Fluid Mech. 735, 613646.CrossRefGoogle Scholar
DeTullio, N. & Sandham, N. D. 2015 Influence of boundary layer disturbances on the instability of a roughness wake in a high-speed boundary layer. J. Fluid Mech. 763, 136165.CrossRefGoogle Scholar
von Doenhoff, A. E. & Braslow, A. L. 1961 The effect of distributed surface roughness on laminar flow. In Boundary Layer and Flow Control (ed. Lachmann, G. V.), vol. 2, pp. 657681. Pergamon.CrossRefGoogle Scholar
Eissler, W. & Bestek, H. 1996 Spatial numerical simulations of linear and weakly nonlinear wave instabilities in supersonic boundary layers. Theor. Comput. Fluid Dyn. 8 (3), 219235.Google Scholar
van den Eynde, J. P. J. P. & Sandham, N. D. 2015 Numerical simulations of transition due to isolated roughness elements at Mach 6. AIAA J. 113; Article in Advance.Google Scholar
Fezer, A. & Kloker, M. J. 2003 DNS of transition mechanisms at Mach 6.8 – flat plate versus sharp cone. In West-East High-Speed Flow Fields, pp. 434441. CIMNE.Google Scholar
Fischer, M. C. 1972 Spreading of a turbulent disturbance. AIAA J. 10 (7), 957959.Google Scholar
Fujii, K. 2006 Experiment of the two-dimensional roughness effect on hypersonic boundary-layer transition. J. Spacecr. Rockets 43 (4), 731738.Google Scholar
Gaster, M. 1962 A note on the relation between temporally-increasing and spatially-increasing disturbances in hydrodynamic stability. J. Fluid Mech. 14 (02), 222224.Google Scholar
Groskopf, G. & Kloker, M. J. 2012 Stability analysis of three-dimensional hypersonic boundary-layer flows with discrete surface roughness. In RTO-MP-AVT-200 Meeting Proceedings, NATO, pp. 30-1–30-20.Google Scholar
Groskopf, G., Kloker, M. J. & Marxen, O. 2010a Bi-global crossplane stability analysis of high-speed boundary-layer flows with discrete roughness. In Seventh IUTAM Symposium on Laminar-Turbulent Transition, Stockholm, Sweden, 2009 (ed. Schlatter, P. & Henningson, D. S.), IUTAM Bookseries, vol. 18. Springer.Google Scholar
Groskopf, G., Kloker, M. J. & Stephani, K. A.2011 Temperature/rarefaction effects in hypersonic boundary-layer flow with an oblique roughness element. AIAA Paper 2011-3251.Google Scholar
Groskopf, G., Kloker, M. J., Stephani, K. A., Marxen, O. & Iaccarino, G. 2010b Hypersonic flows with dicrete oblique surface roughness and their stability properties. In Proceedings of the 2010 Summer Program, pp. 405422. CTR, Stanford University.Google Scholar
Hirschel, E. H. 2005 Basics of Aerothermodynamics. Springer.Google Scholar
Holloway, P. F. & Sterret, J. R.1964 Effect of controlled surface roughness on boundary-layer transition and heat transfer at Mach numbers 4.8 and 6.0. Tech. Rep. Technical Note D-2054. NASA Langley Research Center.Google Scholar
Horvath, T. J., Berry, S. A. & Merski, N. R. 2004 Hypersonic boundary/shear layer transition for blunt to slender configurations – a NASA Langley experimental perspective. In RTO-MP-AVT-200 Meeting Proceedings, NATO, pp. 22-1–22-34,http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA442053.Google Scholar
Jiang, L., Choudhari, M., Chang, C.-L. & Liu, C.2006 Numerical simulations of laminar-turbulent transition in supersonic boundary layer. AIAA Paper 2006-3224.Google Scholar
Keller, M. A. & Kloker, M. J. 2015 Effusion cooling and flow tripping in supersonic boundary-layer flow. AIAA J. 53 (4), 902919.Google Scholar
Kloker, M. 1998 A robust high-order split-type compact FD scheme for spatial direct numerical simulation of boundary-layer transition. Appl. Sci. Res. 59, 353377.CrossRefGoogle Scholar
Koch, W., Bertolotti, F. P., Stolte, A. & Hein, S. 2000 Nonlinear equilibrium solutions in a three-dimensional boundary layer and their secondary instability. J. Fluid Mech. 406, 131174.Google Scholar
Kurz, H. B. E. & Kloker, M. J. 2014 Receptivity of a swept-wing boundary layer to micron-sized discrete roughness elements. J. Fluid Mech. 755, 062082.Google Scholar
Kurz, H. B. E. & Kloker, M. J. 2016 Mechanisms of flow tripping by discrete roughness elements in a swept-wing boundary layer. J. Fluid Mech. 796, 158194.Google Scholar
Lehoucq, R. B., Sorensen, D. C. & Yang, C. 1998 ARPACK User’s Guide. SIAM.Google Scholar
Linn, J. & Kloker, M. J. 2010 Investigation of thermal nonequilibrium on hypersonic boundary-layer transition. In Seventh IUTAM Symposium on Laminar-Turbulent Transition, Stockholm, Sweden, 2009 (ed. Schlatter, P. & Henningson, D. S.), IUTAM Bookseries, vol. 18. Springer.Google Scholar
Mack, L. M. 1975 Linear stability theory and the problem of supersonic boundary-layer transition. AIAA J. 13 (3), 278289.Google Scholar
Mack, L. M. 2000 Early history of compressible linear stability theory. In Laminar-Turbulent Transition, IUTAM Symposium, Sedona/AZ, September 13–17, 1999 (ed. Fasel, H. F. & Saric, W. S.), IUTAM Symposia, vol. 1. Springer.Google Scholar
Marxen, O., Iaccarino, G. & Shaqfeh, E. S. G. 2010 Disturbance evolution in a Mach 4.8 boundary layer with two-dimensional roughness-induced separation and shock. J. Fluid Mech. 648, 435469.Google Scholar
Marxen, O., Iaccarino, G. & Shaqfeh, E. S. G. 2014 Nonlinear instability of a supersonic boundary layer with two-dimensional roughness. J. Fluid Mech. 752, 497520.Google Scholar
Mengaldo, G., Kravtsova, M., Ruban, A. I. & Sherwin, S. J. 2015 Triple-deck and direct numerical simulation analyses of high-speed subsonic flows past a roughness element. J. Fluid Mech. 774, 311323.Google Scholar
Österlund, J. M., Johansson, A. V., Nagib, H. M. & Hites, M. H. 2000 A note on the overlap region in turbulent boundary layers. Phys. Fluids 12 (1), 14.Google Scholar
Pruett, C. D. & Zang, T. A. 1992 Direct numerical simulation of laminar breakdown in high-speed, axisymmetric boundary layers. Theor. Comput. Fluid Dyn. 3 (6), 345367.Google Scholar
Reda, D. C. 2002 Review and synthesis of roughness-dominated transition correlations for reentry applications. J. Spacecr. Rockets 39 (2), 161167.Google Scholar
Redford, J. A., Sandham, N. D. & Roberts, G. T. 2010 Compressibility effects on boundary-layer transition induced by an isolated roughness element. AIAA J. 48 (12), 28182830.Google Scholar
Reshotko, E. & Tumin, A. 2004 Role of transient growth in roughness-induced transition. AIAA J. 42 (4), 766770.CrossRefGoogle Scholar
Schmidt, O. T. & Rist, U. 2011 Linear stability of compressible flow in a streamwise corner. J. Fluid Mech. 688, 569590.CrossRefGoogle Scholar
Schneider, S. P. 2008 Effects of roughness on hypersonic boundary-layer transition. J. Spacecr. Rockets 45 (2), 193209.Google Scholar
Sivasubramanian, J. & Fasel, H. F. 2015 Direct numerical simulation of transition in a sharp cone boundary layer at Mach 6: fundamental breakdown. J. Fluid Mech. 768, 175218.Google Scholar
Spanos, T. A. & Micklos, A.2010 Design and implementation of the boundary layer transition flight experiment on space shuttle discovery. AIAA Paper 2010-242.CrossRefGoogle Scholar
Stolz, S. & Adams, N. A. 2003 Large-eddy simulation of high-Reynolds-number supersonic boundary layers using the approximate deconvolution model and a rescaling and recycling technique. Phys. Fluids 15 (8), 23982412.Google Scholar
Subbareddy, P. K., Bartkowicz, M. D. & Candler, G. V. 2014 Direct numerical simulation of high-speed transition due to an isolated roughness element. J. Fluid Mech. 748, 848878.CrossRefGoogle Scholar
Theofilis, V. 2011 Global linear instability. Annu. Rev. Fluid Mech. 43, 319352.Google Scholar
Tumin, A. 2007 Three-dimensional spatial normal modes in compressible boundary layers. J. Fluid Mech. 586, 295322.Google Scholar
Visbal, M. R. & Gaitonde, D. V. 2002 On the use of higher-order finite-difference schemes on curvilinear and deforming meshes. J. Comput. Phys. 181 (1), 155185.Google Scholar
White, F. M. 2006 Viscous Fluid Flow, 3rd edn. McGraw-Hill.Google Scholar
Zhong, X. & Wang, X. 2012 Direct numerical simulation on the receptivity, instability and transition of hypersonic boundary layers. Annu. Rev. Fluid Mech. 44, 527561.Google Scholar