Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-10T22:09:10.347Z Has data issue: false hasContentIssue false

Instability and breakdown of a vertical vortex pair in a strongly stratified fluid

Published online by Cambridge University Press:  10 July 2008

MICHAEL L. WAITE
Affiliation:
National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000, USA
PIOTR K. SMOLARKIEWICZ
Affiliation:
National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000, USA

Abstract

The dynamics of a counter-rotating pair of columnar vortices aligned parallel to a stable density gradient are investigated. By means of numerical simulation, we extend the linear analyses and laboratory experiments of Billant & Chomaz (J. Fluid Mech. vol. 418, p. 167; vol. 419, pp. 29, 65 (2000)) to the fully nonlinear, large-Reynolds-number regime. A range of stratifications and vertical length scales is considered, with Frh < 0.2 and 0.1 < Frz < 10. Here FrhU/(NR) and FrzUkz/N are the horizontal and vertical Froude numbers, U and R are the horizontal velocity and length scales of the vortices, N is the Brunt–Väisälä frequency, and 2π/kz is the vertical wavelength of a small initial perturbation. At early times with Frz < 1, linear predictions for the zigzag instability are reproduced. Short-wavelength perturbations with Frz > 1 are found to be unstable as well, with growth rates only slightly less than those of the zigzag instability but with very different structure. At later times, the large-Reynolds-number evolution diverges profoundly from the moderate-Reynolds-number laboratory experiments as the instabilities transition to turbulence. For the zigzag instability, this transition occurs when density perturbations generated by the vortex bending become gravitationally unstable. The resulting turbulence rapidly destroys the vortex pair. We derive the criterion η/R ≈ 0.2/Frz for the onset of gravitational instability, where η is the maximum horizontal displacement of the bent vortices, and refine it to account for a finite twisting disturbance. Our simulations agree for the fastest growing wavelengths 0.3 < Frz < 0.8. Short perturbations with Frz > 1 saturate at low amplitude, preserving the columnar structure of the vortices well after the generation of turbulence. Viscosity is shown to suppress the transition to turbulence for Reynolds number Re ≲ 80/Frh, yielding laminar dynamics and, under certain conditions, pancake vortices like those observed in the laboratory.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Basak, S. & Sarkar, S. 2006 Dynamics of a stratified shear layer with horizontal shear. J. Fluid Mech. 568, 1954.CrossRefGoogle Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Bayly, B. J. 1986 Three-dimensional instability of elliptical flows. Phys. Rev. Lett. 57, 21602163.CrossRefGoogle Scholar
Billant, P.Brancher, P. & Chomaz, J.-M. 1999 Three-dimensional stability of a vortex pair. Phys. Fluids 11, 20692077.Google Scholar
Billant, P. & Chomaz, J.-M. 2000 a Experimental evidence for a new instability of a vertical columnar vortex pair in a strongly stratified fluid. J. Fluid Mech. 418, 167188.CrossRefGoogle Scholar
Billant, P. & Chomaz, J.-M. 2000 b Theoretical analysis of the zigzag instability of a vertical columnar vortex pair in a strongly stratified fluid. J. Fluid Mech. 419, 2963.CrossRefGoogle Scholar
Billant, P. & Chomaz, J.-M. 2000 c Three-dimensional stability of a vertical columnar vortex pair in a stratified fluid. J. Fluid Mech. 419, 6591.Google Scholar
Billant, P. & Chomaz, J.-M. 2001 Self-similarity of strongly stratified inviscid flows. Phys. Fluids 13, 16451651.Google Scholar
Chaplygin, S. A. 1903 One case of vortex motion in a fluid. Trans. Phys. Sect. Imperial Moscow Soc. Friends of Natural Sciences 11 (2), 1114.Google Scholar
Clyne, J. & Rast, M. 2005 A prototype discovery environment for analyzing and visualizing terascale turbulent fluid flow simulations. In Visualization and Data Analysis 2005 (ed. Erbacher, R. F., Roberts, J. C., Gordon, M. T. & Borner, K.), pp. 284294. SPIE.Google Scholar
Crow, S. C. 1970 Stability theory for a pair of trailing vortices. AIAA J. 8, 21722179.CrossRefGoogle Scholar
Deloncle, A., Billant, P. & Chomaz, J.-M. 2008 Nonlinear evolution of the zigzag instability in stratified fluids: A shortcut on the route to dissipation. J. Fluid Mech. 599, 229239.Google Scholar
Domaradzki, J. A., Xiao, Z. & Smolarkiewicz, P. K. 2003 Effective eddy viscosities in implicit large eddy simulations of turbulent flows. Phys. Fluids 15, 38903893.CrossRefGoogle Scholar
Drazin, P. G. 1961 On the steady flow of a fluid of variable density past an obstacle. Tellus 13, 239251.Google Scholar
Grinstein, F. F., Margolin, L. G. & Rider, W. J. (Ed.) 2007 Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics. Cambridge University Press.Google Scholar
Herring, J. R. & Métais, O. 1989 Numerical experiments in forced stably stratified turbulence. J. Fluid Mech. 202, 97115.Google Scholar
Kelvin, Lord 1880 Vibrations of a columnar vortex. Phil. Mag. 10 (5), 155168.Google Scholar
Kerswell, R. R. 2002 Elliptical instability. Annu. Rev. Fluid Mech. 34, 83113.Google Scholar
Lamb, H. 1895 Hydrodynamics, 2nd edn.Cambridge University Press.Google Scholar
Laporte, F. & Corjon, A. 2000 Direct numerical simulations of the elliptic instability of a vortex pair. Phys. Fluids 12, 10161031.CrossRefGoogle Scholar
Le Dizès, S. & Laporte, F. 2002 Theoretical predictions for the elliptical instability in a two-vortex flow. J. Fluid Mech. 471, 169201.CrossRefGoogle Scholar
Leweke, T. & Williamson, C. H. K. 1998 Cooperative elliptic instability of a vortex pair. J. Fluid Mech. 360, 85119.Google Scholar
Lilly, D. K. 1983 Stratified turbulence and the mesoscale variability of the atmosphere. J. Atmos. Sci. 40, 749761.Google Scholar
Lindborg, E. 2006 The energy cascade in a strongly stratified fluid. J. Fluid Mech. 550, 207242.CrossRefGoogle Scholar
Margolin, L. G., Rider, W. J. & Grinstein, F. F. 2006 a Modeling turbulent flows with implicit LES. J. Turbul. 7 (15), 127.Google Scholar
Margolin, L. G., Smolarkiewicz, P. K. & Wyszogradzki, A. A. 2006 b Dissipation in implicit turbulence models: A computational study. Trans. ASME: J. Appl. Mech. 73, 469473.Google Scholar
Margolin, L. G., Smolarkiewicz, P. K. & Wyszogrodzki, A. A. 2002 Implicit turbulence modeling for high Reynolds number flows. Trans. ASME: J. Fluids Engng 124, 862867.Google Scholar
Meleshko, V. V. & van Heijst, G. L. V. 1994 On Chaplygin's investigations of two-dimensional vortex structures in an inviscid fluid. J. Fluid Mech. 272, 157182.CrossRefGoogle Scholar
Miyazaki, T. & Fukumoto, Y. 1992 Three-dimensional instability of strained vortices in a stably stratified fluid. Phys. Fluids A 4, 25152522.CrossRefGoogle Scholar
Moin, P. & Mahesh, K. 1998 Direct numerical simulation: A tool in turbulence research. Annu. Rev. Fluid Mech. 30, 539578.CrossRefGoogle Scholar
Moore, D. W. & Saffman, P. G. 1975 The instability of a straight vortex filament in a strain field. Proc. R. Soc. Lond. A 346, 413425.Google Scholar
Ngan, K., Straub, D. N. & Bartello, P. 2005 Aspect ratio effects in quasi-two-dimensional turbulence. Phys. Fluids 17, 125102.CrossRefGoogle Scholar
Otheguy, P., Billant, P. & Chomaz, J.-M. 2006 a The effect of planetary rotation on the zigzag instability of co-rotating vortices in a stratified fluid. J. Fluid Mech. 553, 273281.Google Scholar
Otheguy, P., Chomaz, J.-M. & Billant, P. 2006 b Elliptic and zigzag instabilities on co-rotating vertical vortices in a stratified fluid. J. Fluid Mech. 553, 253272.Google Scholar
Pierrehumbert, R. T. 1986 Universal short-wave instability of two-dimensional eddies in an inviscid fluid. Phys. Rev. Lett. 57, 21572159.Google Scholar
Prusa, J. M. & Smolarkiewicz, P. K. 2003 An all-scale anelastic model for geophysical flows: Dynamic grid deformation. J. Comput. Phys. 190, 601622.CrossRefGoogle Scholar
Riley, J. J. & de BruynKops, S. M. 2003 Dynamics of turbulence strongly influenced by buoyancy. Phys. Fluids 15, 20472059.Google Scholar
Riley, J. J., Metcalfe, R. W. & Weissman, M. A. 1981 Direct numerical simulations of homogeneous turbulence in density-stratified fluids. In Nonlinear Properties of Internal Waves (ed. West, B. J.), pp. 79112. APS.Google Scholar
Robinson, A. C. & Saffman, P. G. 1984 Three-dimensional stability of an elliptical vortex in a straining field. J. Fluid Mech. 142, 451466.Google Scholar
Schumann, U. 1991 Subgrid length-scales for large-eddy simulation of stratified turbulence. Theor. Comput. Fluid Dyn. 2, 279290.Google Scholar
Sipp, D. & Jacquin, L. 2003 Widnall instabilities in vortex pairs. Phys. Fluids 15, 18611874.Google Scholar
Smolarkiewicz, P. K. 2006 Multidimensional positive definite advection transport algorithm: An overview. Intl J. Numer. Meth. Fluids 50, 11231144.Google Scholar
Smolarkiewicz, P. K. & Grabowski, W. W. 1990 The multidimensional positive definite advection transport algorithm: Nonoscillatory option. J. Comput. Phys. 86, 355375.Google Scholar
Smolarkiewicz, P. K. & Margolin, L. G. 1993 On forward-in-time differencing for fluids: Extension to a curvilinear framework. Mon. Wea. Rev. 121, 18471859.Google Scholar
Smolarkiewicz, P. K. & Margolin, L. G. 1998 MPDATA: A positive definite solver for geophysical flows. J. Comput. Phys. 140, 459480.Google Scholar
Smolarkiewicz, P. K. & Margolin, L. G. 2000 Variational methods for elliptic problems in fluid models. In Proc. ECMWF Workshop on Developments in Numerical Methods for Very High Resolution Global Models, pp. 137–159. Reading, UK: ECMWF.Google Scholar
Smolarkiewicz, P. K. & Margolin, L. G. 2007 Studies in geophysics. In Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics (ed. Grinstein, F. F., Margolin, L. & Rider, W.). Cambridge University Press.Google Scholar
Smolarkiewicz, P. K., Margolin, L. G. & Wyszogrodzki, A. A. 2001 A class of nonhydrostatic global models. J. Atmos. Sci. 58, 349364.Google Scholar
Smolarkiewicz, P. K. & Prusa, J. M. 2002 Forward-in-time differencing for fluids: Simulations of geophysical turbulence. In Turbulent Flow Computation (ed. Drikakis, D. & Guertz, B. J.), pp. 279312. Kluwer.Google Scholar
Smolarkiewicz, P. K. & Prusa, J. M. 2005 Towards mesh adaptivity for geophysical turbulence: Continuous mapping approach. Intl J. Numer. Meth. Fluids 47, 789801.Google Scholar
Smolarkiewicz, P. K., Sharman, R., Weil, J., Perry, S. G., Heist, D. & Bowker, G. 2007 Building resolving large-eddy simulations and comparison with wind tunnel experiments. J. Comput. Phys. 227, 633653.Google Scholar
Thomas, P. J. & Auerbach, D. 1994 The observation of the simultaneous development of a long- and a short-wave instability mode on a vortex pair. J. Fluid Mech. 265, 289302.Google Scholar
Tsai, C.-Y. & Widnall, S. E. 1976 The stability of short waves on a straight vortex filament in a weak externally imposed strain field. J. Fluid Mech. 73, 721733.CrossRefGoogle Scholar
Vladimirov, V. A. & Il'in, K. I. 1988 Three-dimensional instability of an elliptic Kirchhoff vortex. Fluid Dyns. 23, 356360.Google Scholar
Waite, M. L. & Bartello, P. 2004 Stratified turbulence dominated by vortical motion. J. Fluid Mech. 517, 281308.Google Scholar
Waleffe, F. 1990 On the three-dimensional instability of strained vortices. Phys. Fluids A 2, 7680.Google Scholar
Warn-Varnas, A., Hawkins, J., Smolarkiewicz, P. K., Chin-Bing, S. A., King, D. & Hallock, Z. 2007 Solitary wave effects north of Strait of Messina. Ocean Modell. 18, 97121.Google Scholar
Wedi, N. P. & Smolarkiewicz, P. K. 2006 Direct numerical simulation of the Plumb-McEwan laboratory analog of the QBO. J. Atmos. Sci. 63 32263252.Google Scholar