Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T14:14:59.506Z Has data issue: false hasContentIssue false

Instabilities of two-layer shallow-water flows with vertical shear in the rotating annulus

Published online by Cambridge University Press:  18 September 2009

J. GULA
Affiliation:
Laboratoire de Météorologie Dynamique, ENS and University P. and M. Curie, 24, rue Lhomond 75005, Paris, France
V. ZEITLIN*
Affiliation:
Laboratoire de Météorologie Dynamique, ENS and University P. and M. Curie, 24, rue Lhomond 75005, Paris, France
R. PLOUGONVEN
Affiliation:
Laboratoire de Météorologie Dynamique, ENS and University P. and M. Curie, 24, rue Lhomond 75005, Paris, France
*
Email address for correspondence: [email protected]

Abstract

Being motivated by the recent experiments on instabilities of the two-layer flows in the rotating annulus with super-rotating top, we perform a full stability analysis for such system in the shallow-water approximation. We use the collocation method which is benchmarked by comparison with analytically solvable one-layer shallow-water equations linearized about a state of cyclogeostrophic equilibrium. We describe different kinds of instabilities of the cyclogeostrophically balanced state of solid-body rotation of each layer (baroclinic, Rossby–Kelvin (RK) and Kelvin–Helmholtz (KH) instabilities), and give the corresponding growth rates and the structure of the unstable modes. We obtain the full stability diagram in the space of parameters of the problem and demonstrate the existence of crossover regions where baroclinic and RK, and RK and KH instabilities, respectively, compete having similar growth rates.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balmforth, N. J. 1999 Shear instability in shallow water. J. Fluid Mech. 387, 97127.CrossRefGoogle Scholar
Cairns, R. A. 1979 The role of negative energy waves in some instabilities of parallel flows. J. Fluid Mech. 92, 114.CrossRefGoogle Scholar
Dunkerton, T., Lelong, P. & Snyder, C. (Ed.) 2008 Spontaneous imbalance. J. Atmos. Sci. webpage: http://ams.allenpress.com/perlserv/?request=get-collection&coll_id=20&ct=1.Google Scholar
Flor, J. B. 2008 Frontal instability, inertia-gravity wave radiation and vortex formation. In Proceedings of the ICMI International Conference on Multimodal Interfacings, London, UK.Google Scholar
Ford, R. 1994 Gravity wave radiation from vortex trains in rotating shallow water. J. Fluid Mech. 281, 81118.CrossRefGoogle Scholar
Fultz, D., Long, R. R., Owens, G. V., Bohan, W., Kaylor, R. & Weil, I. 1959 Studies of thermal convection in a rotating cylinder with some implications for large-scale atmospheric motions. Meteorol. Monogr. 4, 1104.Google Scholar
Griffiths, R. W. & Linden, P. F. 1982 Part I. Density-driven boundary currents. Geophys. Astrophys. Fluid Dyn. 19, 159187.CrossRefGoogle Scholar
Gula, J., Plougonven, R. & Zeitlin, V. 2009 Ageostrophic instabilities of fronts in a channel in the stratified rotating fluid. J. Fluid Mech. 627, 485507.CrossRefGoogle Scholar
Hart, J. E. 1972 A laboratory study of baroclinic instability. Geophys. Astrophys. Fluid Dyn. 3, 181209.CrossRefGoogle Scholar
Hide, R. 1958 An experimental study of thermal convection in a rotating liquid. Phil. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 250 (983), 441478.Google Scholar
Hide, R. & Fowlis, W. W. 1965 Thermal convection in a rotating annulus of liquid: effect of viscosity on the transition between axisymmetric and non-axisymmetric flow regimes. J. Atmos. Sci. 22, 541558.2.0.CO;2>CrossRefGoogle Scholar
Hoskins, B. J., McIntyre, M. E. & Robertson, A. W. 1985 On the use and significance of isentropic potential vorticity maps. Quart. J. R. Meteorol. Soc. 111 (470), 877946.CrossRefGoogle Scholar
James, I. N. 1977 Stability of flow in a slowly rotating two-layer system. Occasional Note Met Office 27/77/2 unpublished.Google Scholar
Killworth, P. D. 1983 On the motion of isolated lenses on a beta-plane. J. Phys. Oceanogr. 13, 368376.2.0.CO;2>CrossRefGoogle Scholar
Knessl, C. & Keller, J. B. 1995 Stability of linear shear flows in shallow water. J. Fluid Mech. 303, 203214.CrossRefGoogle Scholar
Lovegrove, A. F., Read, P. L. & Richards, C. J. 2000 Generation of inertia-gravity waves in a baroclinically unstable fluid. Quart. J. R. Meteorol. Soc. 126, 32333254.Google Scholar
O'Sullivan, D. & Dunkerton, T. J. 1995 Generation of inertia-gravity waves in a simulated life cycle of baroclinic instability. J. Atmos. Sci. 52 (21), 36953716.2.0.CO;2>CrossRefGoogle Scholar
Poulin, F. J. & Flierl, G. R. 2003 The nonlinear evolution of barotropically unstable jets. J. Phys. Oceanogr. 33, 21732192.2.0.CO;2>CrossRefGoogle Scholar
Sakai, S. 1989 Rossby–Kelvin instability: a new type of ageostrophic instability caused by a resonance between Rossby waves and gravity waves. J. Fluid Mech. 202, 149176.CrossRefGoogle Scholar
Stewartson, K. 1957 On almost rigid rotations. J. Fluid Mech. 3, 1726.CrossRefGoogle Scholar
Trefethen, L. N. 2000 Spectral Methods in Matlab. Society for Industrial and Applied Mathematics.CrossRefGoogle Scholar
Williams, P. D., Haine, T. W. N. & Read, P. L. 2005 On the generation mechanisms of short-scale unbalanced modes in rotating two-layer flows with vertical shear. J. Fluid Mech. 528, 122.CrossRefGoogle Scholar
Williams, P. D., Read, P. L. & Haine, T. W. N. 2004 A calibrated, non-invasive method for measuring the internal interface height field at high resolution in the rotating, two-layer annulus. Geophys. Astrophys. Fluid Dyn. 98, 453471.CrossRefGoogle Scholar