Hostname: page-component-f554764f5-sl7kg Total loading time: 0 Render date: 2025-04-10T06:19:43.879Z Has data issue: false hasContentIssue false

Influences of small-scale shear instability on passive-scalar mixing in a shear-free turbulent front

Published online by Cambridge University Press:  02 April 2025

Tomoaki Watanabe*
Affiliation:
Department of Mechanical Engineering and Science, Kyoto University, Kyoto 615–8540, Japan
Koji Nagata
Affiliation:
Department of Mechanical Engineering and Science, Kyoto University, Kyoto 615–8540, Japan
*
Corresponding author: Tomoaki Watanabe, [email protected]

Abstract

Local shearing motions in turbulence form small-scale shear layers, which are unstable to perturbations at approximately 30 times the Kolmogorov scale. This study conducts direct numerical simulations of passive-scalar mixing layers in a shear-free turbulent front to investigate mixing enhancements induced by such perturbations. The initial turbulent Reynolds number based on the Taylor microscale is $ Re_\lambda = 72$ or 202. The turbulent front develops by entraining outer fluid. Weak sinusoidal velocity perturbations are introduced locally, either inside or outside the turbulent front, or globally throughout the flow. Perturbations at this critical wavelength promote small-scale shear instability, complicating the boundary geometry of the scalar mixing layer at small scales. This increases the fractal dimension and enhances scalar diffusion outward from the scalar mixing layer. Additionally, the promoted instability increases the scalar dissipation rate and turbulent scalar flux at small scales, facilitating faster scalar mixing. The effects manifest locally; external perturbations intensify mixing near the boundary, while internal perturbations affect the entire turbulent region. The impact of perturbations is consistent across different Reynolds numbers when the amplitudes normalised by the Kolmogorov velocity are the same, indicating that even weaker perturbations can enhance scalar mixing at higher Reynolds numbers. The mean scalar dissipation rate increases by up to 50 %, even when the perturbation energy is only 2.5 % of the turbulent kinetic energy. These results underscore the potential to leverage small-scale shear instability for efficient mixing enhancement in applications such as chemically reacting flows.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abreu, H., Pinho, F.T. & da Silva, C.B. 2022 Turbulent entrainment in viscoelastic fluids. J. Fluid Mech. 934, A36.Google Scholar
Antonia, R.A. 1981 Conditional sampling in turbulence measurement. Annu. Rev. Fluid Mech. 13 (1), 131156.Google Scholar
Benard, N., Bonnet, J.P., Touchard, G. & Moreau, E. 2008 Flow control by dielectric barrier discharge actuators: jet mixing enhancement. AIAA J. 46 (9), 22932305.Google Scholar
Bhatt, K. & Tsuji, Y. 2021 Identification of vortex structures in flow fields using tomographic PIV method. J. Fluid Sci. Tech. 16 (3), JFST0018JFST0018.Google Scholar
Bilger, R.W. 2004 Some aspects of scalar dissipation. Flow Turbul. Combust. 72 (2-4), 93114.Google Scholar
Bilger, R.W., Antonia, R.A. & Sreenivasan, K.R. 1976 Determination of intermittency from the probability density function of a passive scalar. Phys. Fluids 19 (10), 14711474.CrossRefGoogle Scholar
Bilger, R.W., Saetran, L.R. & Krishnamoorthy, L.V. 1991 Reaction in a scalar mixing layer. J. Fluid Mech. 233, 211242.CrossRefGoogle Scholar
Bisset, D.K., Hunt, J.C.R. & Rogers, M.M. 2002 The turbulent/non-turbulent interface bounding a far wake. J. Fluid Mech. 451, 383410.CrossRefGoogle Scholar
Blakeley, B.C., Olson, B.J. & Riley, J.J. 2022 Self-similarity of scalar isosurface area density in a temporal mixing layer. J. Fluid Mech. 951, A44.CrossRefGoogle Scholar
Blakeley, B.C., Olson, B.J. & Riley, J.J. 2023 On the evolution of scalar iso-surface area density in a turbulent mixing layer. J. Fluid Mech. 966, A33.CrossRefGoogle Scholar
Breda, M. & Buxton, O.R.H. 2019 Behaviour of small-scale turbulence in the turbulent/non-turbulent interface region of developing turbulent jets. J. Fluid Mech. 879, 187216.Google Scholar
Britter, R.E., Hunt, J.C.R. & Mumford, J.C. 1979 The distortion of turbulence by a circular cylinder. J. Fluid Mech. 92 (2), 269301.Google Scholar
Buxton, O.R.H., Breda, M. & Dhall, K. 2019 Importance of small-scale anisotropy in the turbulent/nonturbulent interface region of turbulent free shear flows. Phys. Rev. Fluids 4 (3), 034603.Google Scholar
Buxton, O.R.H. & Ganapathisubramani, B. 2010 Amplification of enstrophy in the far field of an axisymmetric turbulent jet. J. Fluid Mech. 651, 483502.Google Scholar
Carroll, P.L. & Blanquart, G. 2013 A proposed modification to Lundgren’s physical space velocity forcing method for isotropic turbulence. Phys. Fluids 25 (10), 105114.Google Scholar
Cattafesta, L.N. III, Sheplak, M. 2011 Actuators for active flow control. Annu. Rev. Fluid Mech. 43 (1), 247272.Google Scholar
Chen, C.H.P. & Blackwelder, R.F. 1978 Large-scale motion in a turbulent boundary layer: a study using temperature contamination. J. Fluid Mech. 89 (1), 131.CrossRefGoogle Scholar
Chen, J. & Buxton, O.R.H. 2023 Spatial evolution of the turbulent/turbulent interface geometry in a cylinder wake. J. Fluid Mech. 969, A4.Google Scholar
Chen, X., Chung, Y.M. & Wan, M. 2021 The uniform-momentum zones and internal shear layers in turbulent pipe flows at reynolds numbers up to $re_\tau = 1000$ . Intl J. Heat Fluid Flow 90, 108817.CrossRefGoogle Scholar
Cimarelli, A., Cocconi, G., Frohnapfel, B. & De Angelis, E. 2015 Spectral enstrophy budget in a shear-less flow with turbulent/non-turbulent interface. Phys. Fluids 27 (12), 125106.Google Scholar
Corcos, G.M. & Lin, S.J. 1984 The mixing layer: deterministic models of a turbulent flow. Part 2. The origin of the three-dimensional motion. J. Fluid Mech. 139, 6795.CrossRefGoogle Scholar
da Silva, C.B., Dos Reis, R.J.N. & Pereira, J.C.F. 2011 The intense vorticity structures near the turbulent/non-turbulent interface in a jet. J. Fluid Mech. 685, 165190.CrossRefGoogle Scholar
da Silva, C.B., Hunt, J.C.R., Eames, I. & Westerweel, J. 2014 Interfacial layers between regions of different turbulence intensity. Annu. Rev. Fluid Mech 46 (1), 567590.Google Scholar
da Silva, C.B. & Pereira, J.C.F. 2008 Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets. Phys. Fluids 20 (5), 055101.CrossRefGoogle Scholar
da Silva, C.B. & Taveira, R.R. 2010 The thickness of the turbulent/nonturbulent interface is equal to the radius of the large vorticity structures near the edge of the shear layer. Phys. Fluids 22 (12), 121702.CrossRefGoogle Scholar
Das, R. & Girimaji, S.S. 2020 Characterization of velocity-gradient dynamics in incompressible turbulence using local streamline geometry. J. Fluid Mech. 895, A5.CrossRefGoogle Scholar
Dimotakis, P.E. 2005 Turbulent mixing. Annu. Rev. Fluid Mech. 37 (1), 329356.Google Scholar
Dogan, E., Hanson, R.E. & Ganapathisubramani, B. 2016 Interactions of large-scale free-stream turbulence with turbulent boundary layers. J. Fluid Mech. 802, 79107.Google Scholar
Eisma, J., Westerweel, J., Ooms, G. & Elsinga, G.E. 2015 Interfaces and internal layers in a turbulent boundary layer. Phys. Fluids 27 (5), 055103.CrossRefGoogle Scholar
Elsinga, G.E. & da Silva, C.B. 2019 How the turbulent/non-turbulent interface is different from internal turbulence. J. Fluid Mech. 866, 216238.Google Scholar
Elsinga, G.E., Ishihara, T., Goudar, M.V., da Silva, C.B. & Hunt, J.C.R. 2017 The scaling of straining motions in homogeneous isotropic turbulence. J. Fluid Mech. 829, 3164.Google Scholar
Elsinga, G.E. & Marusic, I. 2010 Universal aspects of small-scale motions in turbulence. J. Fluid Mech. 662, 514539.CrossRefGoogle Scholar
Enoki, R., Watanabe, T. & Nagata, K. 2023 Statistical properties of shear and nonshear velocity components in isotropic turbulence and turbulent jets. Phys. Rev. Fluids 8 (10), 104602.CrossRefGoogle Scholar
Er, S., Laval, J.P. & Vassilicos, J.C. 2023 Length scales and the turbulent/non-turbulent interface of a temporally developing turbulent jet. J. Fluid Mech. 970, A33.CrossRefGoogle Scholar
Fan, D., Xu, J., Yao, M.X. & Hickey, J.P. 2019 On the detection of internal interfacial layers in turbulent flows. J. Fluid Mech. 872, 198217.Google Scholar
Fiscaletti, D., Buxton, O.R.H. & Attili, A. 2021 Internal layers in turbulent free-shear flows. Phys. Rev. Fluids 6 (3), 034612.CrossRefGoogle Scholar
Fiscaletti, D., Ragni, D., Overmars, E.F.J., Westerweel, J. & Elsinga, G.E. 2022 Tomographic long-distance $\mu$ PIV to investigate the small scales of turbulence in a jet at high reynolds number. Exp. Fluids 63 (1), 9.CrossRefGoogle Scholar
Fox, R.O. 2003 Computational Models for Turbulent Reacting Flows. Cambridge University Press.CrossRefGoogle Scholar
Gampert, M., Boschung, J., Hennig, F., Gauding, M. & Peters, N. 2014 The vorticity versus the scalar criterion for the detection of the turbulent/non-turbulent interface. J. Fluid Mech. 750, 578596.CrossRefGoogle Scholar
Ghira, A.A., Elsinga, G.E. & da Silva, C.B. 2022 Characteristics of the intense vorticity structures in isotropic turbulence at high Reynolds numbers. Phys. Rev. Fluids 7 (10), 104605.CrossRefGoogle Scholar
Gul, M., Elsinga, G.E. & Westerweel, J. 2020 Internal shear layers and edges of uniform momentum zones in a turbulent pipe flow. J. Fluid Mech. 901, A10.CrossRefGoogle Scholar
Hancock, P.E. & Bradshaw, P. 1989 Turbulence structure of a boundary layer beneath a turbulent free stream. J. Fluid Mech. 205, 4576.CrossRefGoogle Scholar
Hayashi, M., Watanabe, T. & Nagata, K. 2021 a Characteristics of small-scale shear layers in a temporally evolving turbulent planar jet. J. Fluid Mech. 920, A38.CrossRefGoogle Scholar
Hayashi, M., Watanabe, T. & Nagata, K. 2021 b The relation between shearing motions and the turbulent/non-turbulent interface in a turbulent planar jet. Phys. Fluids 33 (5), 055126.CrossRefGoogle Scholar
Heisel, M., de Silva, C.M., Hutchins, N., Marusic, I. & Guala, M. 2021 Prograde vortices, internal shear layers and the Taylor microscale in high-reynolds-number turbulent boundary layers. J. Fluid Mech. 920, A52.CrossRefGoogle Scholar
Hill, J.C. 1976 Homogeneous turbulent mixing with chemical reaction. Annu. Rev. Fluid Mech. 8 (1), 135161.CrossRefGoogle Scholar
Holzner, M. & Lüthi, B. 2011 Laminar superlayer at the turbulence boundary. Phys. Rev. Lett. 106 (13), 134503.CrossRefGoogle ScholarPubMed
Horiuti, K. & Takagi, Y. 2005 Identification method for vortex sheet structures in turbulent flows. Phys. Fluids 17 (12), 121703.Google Scholar
Huang, J., Burridge, H.C. & van Reeuwijk, M. 2023 Local entrainment across a TNTI and a TTI in a turbulent forced fountain. J. Fluid Mech. 977, A13.CrossRefGoogle Scholar
Iovieno, M., Di Savino, S., Gallana, L. & Tordella, D. 2014 Mixing of a passive scalar across a thin shearless layer: concentration of intermittency on the sides of the turbulent interface. J. Turbul. 15 (5), 311334.CrossRefGoogle Scholar
Ishihara, T., Kaneda, Y. & Hunt, J.C.R. 2013 Thin shear layers in high Reynolds number turbulence–DNS results. Flow Turbul. Combust. 91 (4), 895929.CrossRefGoogle Scholar
Ito, Y., Miura, K., Sakai, Y. & Iwano, K. 2018 Enhancement and suppression of mixing and diffusion in an axisymmetric jet by half delta-wing tabs. Intl J. Heat Mass Transfer 118, 12181230.Google Scholar
Iyer, K.P., Schumacher, J., Sreenivasan, K.R. & Yeung, P.K. 2020 Fractal iso-level sets in high-Reynolds-number scalar turbulence. Phys. Rev. Fluids 5 (4), 044501.CrossRefGoogle Scholar
Jahanbakhshi, R. & Madnia, C.K. 2016 Entrainment in a compressible turbulent shear layer. J. Fluid Mech. 797, 564603.CrossRefGoogle Scholar
Jahanbakhshi, R., Vaghefi, N.S. & Madnia, C.K. 2015 Baroclinic vorticity generation near the turbulent/non-turbulent interface in a compressible shear layer. Phys. Fluids 27 (10), 105105.CrossRefGoogle Scholar
Jiménez, J. & Wray, A.A. 1998 On the characteristics of vortex filaments in isotropic turbulence. J. Fluid Mech. 373, 255285.CrossRefGoogle Scholar
Jiménez, J., Wray, A.A., Saffman, P.G. & Rogallo, R.S. 1993 The structure of intense vorticity in isotropic turbulence. J. Fluid Mech. 255, 6590.CrossRefGoogle Scholar
Jooss, Y., Li, L., Bracchi, T. & Hearst, R.J. 2021 Spatial development of a turbulent boundary layer subjected to freestream turbulence. J. Fluid Mech. 911, A4.Google Scholar
Kang, H.S. & Meneveau, C. 2008 Experimental study of an active grid-generated shearless mixing layer and comparisons with large-eddy simulation. Phys. Fluids 20 (12), 125102.CrossRefGoogle Scholar
Kang, S.J., Tanahashi, M. & Miyauchi, T. 2007 Dynamics of fine scale eddy clusters in turbulent channel flows. J. Turbul. 8, N52.CrossRefGoogle Scholar
Kankanwadi, K.S. & Buxton, O.R.H. 2020 Turbulent entrainment into a cylinder wake from a turbulent background. J. Fluid Mech. 905, A35.CrossRefGoogle Scholar
Kato, H., Takamure, K. & Uchiyama, T. 2022 Characteristics of vortex shedding in the wake of a sphere with a uniaxial through-hole. AIP Adv. 12 (10), 105112.CrossRefGoogle Scholar
Khan, J.R. & Rao, S. 2023 Properties of the turbulent/non-turbulent layer of a turbulent Boussinesq plume: a study using direct numerical simulation. Phys. Fluids 35 (5), 055140.CrossRefGoogle Scholar
Kim, S.H. & Bilger, R.W. 2007 Iso-surface mass flow density and its implications for turbulent mixing and combustion. J. Fluid Mech. 590, 381409.CrossRefGoogle Scholar
Kohan, K.F. & Gaskin, S. 2020 The effect of the geometric features of the turbulent/non-turbulent interface on the entrainment of a passive scalar into a jet. Phys. Fluids 32 (9), 095114.CrossRefGoogle Scholar
Kohan, K.F. & Gaskin, S.J. 2022 On the scalar turbulent/turbulent interface of axisymmetric jets. J. Fluid Mech. 950, A32.CrossRefGoogle Scholar
Kolář, V. 2007 Vortex identification: new requirements and limitations. Intl J. Heat Fluid Flow 28 (4), 638652.Google Scholar
Kozul, M., Hearst, R.J., Monty, J.P., Ganapathisubramani, B. & Chung, D. 2020 Response of the temporal turbulent boundary layer to decaying free-stream turbulence. J. Fluid Mech. 896, A11.CrossRefGoogle Scholar
Kronborg, J. & Hoffman, J. 2023 The triple decomposition of the velocity gradient tensor as a standardized real Schur form. Phys. Fluids 35 (3), 031703.Google Scholar
Kwon, Y.S., Philip, J., de Silva, C.M., Hutchins, N. & Monty, J.P. 2014 The quiescent core of turbulent channel flow. J. Fluid Mech. 751, 228254.CrossRefGoogle Scholar
Li, S. & Wang, J. 2024 Entrainment of the shear layer separated from a wall-mounted fence. J. Fluid Mech. 999, A6.CrossRefGoogle Scholar
Liu, C., Gao, Y., Tian, S. & Dong, X. 2018 Rortex-A new vortex vector definition and vorticity tensor and vector decompositions. Phys. Fluids 30 (3), 035103.CrossRefGoogle Scholar
Liu, P., Duan, H. & Zhao, W. 2009 Numerical investigation of hot air recirculation of air-cooled condensers at a large power plant. Appl. Therm. Engng 29 (10), 19271934.CrossRefGoogle Scholar
Longmire, E.K., Eaton, J.K. & Elkins, C.J. 1992 Control of jet structure by crown-shaped nozzles. AIAA J. 30 (2), 505512.CrossRefGoogle Scholar
Matsushima, T., Nagata, K. & Watanabe, T. 2021 Wavelet analysis of shearless turbulent mixing layer. Phys. Fluids 33 (2), 025109.CrossRefGoogle Scholar
Meneveau, C. & Sreenivasan, K.R. 1990 Interface dimension in intermittent turbulence. Phys. Rev. A 41 (4), 22462248.CrossRefGoogle ScholarPubMed
Mistry, D., Dawson, J.R. & Kerstein, A.R. 2018 The multi-scale geometry of the near field in an axisymmetric jet. J. Fluid Mech. 838, 501515.Google Scholar
Mistry, D., Philip, J., Dawson, J.R. & Marusic, I. 2016 Entrainment at multi-scales across the turbulent/non-turbulent interface in an axisymmetric jet. J. Fluid Mech. 802, 690725.CrossRefGoogle Scholar
Morinishi, Y., Lund, T.S., Vasilyev, O.V. & Moin, P. 1998 Fully conservative higher order finite difference schemes for incompressible flow. J. Comput. Phys. 143 (1), 90124.Google Scholar
Mouri, H., Hori, A. & Kawashima, Y. 2007 Laboratory experiments for intense vortical structures in turbulence velocity fields. Phys. Fluids 19 (5), 055101.Google Scholar
Murlis, J., Tsai, H.M. & Bradshaw, P. 1982 The structure of turbulent boundary layers at low Reynolds numbers. J. Fluid Mech. 122, 1356.CrossRefGoogle Scholar
Nagata, K., Sakai, Y. & Komori, S. 2011 Effects of small-scale freestream turbulence on turbulent boundary layers with and without thermal convection. Phys. Fluids 23 (6), 065111.CrossRefGoogle Scholar
Nagata, R., Watanabe, T. & Nagata, K. 2018 Turbulent/non-turbulent interfaces in temporally evolving compressible planar jets. Phys. Fluids 30 (10), 105109.CrossRefGoogle Scholar
Nagata, R., Watanabe, T., Nagata, K. & da Silva, C.B. 2020 a Triple decomposition of velocity gradient tensor in homogeneous isotropic turbulence. Comput. Fluids 198, 104389.CrossRefGoogle Scholar
Nagata, T., Noguchi, A., Kusama, K., Nonomura, T., Komuro, A., Ando, A. & Asai, K. 2020 b Experimental investigation on compressible flow over a circular cylinder at Reynolds number of between 1000 and 5000. J. Fluid Mech. 893, A13.CrossRefGoogle Scholar
Nakamura, K., Matsushima, T., Zheng, Y., Nagata, K. & Watanabe, T. 2022 Large-and small-scale characteristics in a temporally developing shearless turbulent mixing layer. Phys. Fluids 34 (11), 115117.CrossRefGoogle Scholar
Nakamura, K., Watanabe, T. & Nagata, K. 2023 Turbulent/turbulent interfacial layers of a shearless turbulence mixing layer in temporally evolving grid turbulence. Phys. Fluids 35 (4), 045117.Google Scholar
Neamtu-Halic, M.M., Krug, D., Mollicone, J.P., van Reeuwijk, M., Haller, G. & Holzner, M. 2020 Connecting the time evolution of the turbulence interface to coherent structures. J. Fluid Mech. 898, A3.CrossRefGoogle Scholar
Papamoschou, D. & Roshko, A. 1988 The compressible turbulent shear layer: an experimental study. J. Fluid Mech. 197, 453477.CrossRefGoogle Scholar
Passot, T., Politano, H., Sulem, P.L., Angilella, J.R. & Meneguzzi, M. 1995 Instability of strained vortex layers and vortex tube formation in homogeneous turbulence. J. Fluid Mech. 282, 313338.Google Scholar
Phillips, O.M. 1955 The irrotational motion outside a free turbulent boundary. In Proceedings of the Cambridge Philosophical Society. vol. 51, pp. 220229. Cambridge University Press.CrossRefGoogle Scholar
Pirozzoli, S., Bernardini, M. & Grasso, F. 2010 On the dynamical relevance of coherent vortical structures in turbulent boundary layers. J. Fluid Mech. 648, 325349.CrossRefGoogle Scholar
Pope, S.B. 1988 The evolution of surfaces in turbulence. Intl J. Engng Sci. 26 (5), 445469.CrossRefGoogle Scholar
Ren, J., Wang, H., Luo, K. & Fan, J. 2024 Investigation of entrainment and its effect on flame stabilization in a turbulent high Karlovitz number premixed jet flame using direct numerical simulation. Flow Turbul. Combust. 112 (2), 537556.Google Scholar
Ruetsch, G.R. & Maxey, M.R. 1991 Small-scale features of vorticity and passive scalar fields in homogeneous isotropic turbulence. Phys. Fluids 3 (6), 15871597.Google Scholar
Ruetsch, G.R. & Maxey, M.R. 1992 The evolution of small-scale structures in homogeneous isotropic turbulence. Phys. Fluids 4 (12), 27472760.CrossRefGoogle Scholar
Sadeghi, H., Lavoie, P. & Pollard, A. 2014 The effect of Reynolds number on the scaling range along the centreline of a round turbulent jet. J. Turbul. 15 (6), 335349.CrossRefGoogle Scholar
Sakurai, Y. & Ishihara, T. 2018 Relationships between small-scale fluid motions and inertial particle clustering in turbulence. J. Phys. Soc. Japan 87 (9), 093401.Google Scholar
Sharp, N.S., Neuscamman, S. & Warhaft, Z. 2009 Effects of large-scale free stream turbulence on a turbulent boundary layer. Phys. Fluids 21 (9), 095105.CrossRefGoogle Scholar
Siggia, E.D. 1981 Numerical study of small-scale intermittency in three-dimensional turbulence. J. Fluid Mech. 107, 375406.CrossRefGoogle Scholar
Silva, T.S. & da Silva, C.B. 2017 The behaviour of the scalar gradient across the turbulent/non-turbulent interface in jets. Phys. Fluids 29 (8), 085106.Google Scholar
Sreenivasan, K.R., Ramshankar, R. & Meneveau, C.H. 1989 Mixing, entrainment and fractal dimensions of surfaces in turbulent flows. Proc. R. Soc. Lond. A: Math. Phys. Sci. 421 (1860), 79108.Google Scholar
Su, S., Long, Y., Wang, J. & Li, X. 2024 Investigations on the turbulentnon-turbulent interface in supersonic compressible plate turbulent boundary layer. J. Fluid Mech. 988, A30.CrossRefGoogle Scholar
Taveira, R.R. & da Silva, C.B. 2013 Kinetic energy budgets near the turbulent/nonturbulent interface in jets. Phys. Fluids 25 (1), 015114.Google Scholar
Taveira, R.R. & da Silva, C.B. 2014 Characteristics of the viscous superlayer in shear free turbulence and in planar turbulent jets. Phys. Fluids 26 (2), 021702.CrossRefGoogle Scholar
Taveira, R.R., Diogo, J.S., Lopes, D.C. & da Silva, C.B. 2013 Lagrangian statistics across the turbulent-nonturbulent interface in a turbulent plane jet. Phys. Rev. E 88 (4), 043001.CrossRefGoogle Scholar
Teixeira, M.A.C. & da Silva, C.B. 2012 Turbulence dynamics near a turbulent/non-turbulent interface. J. Fluid Mech. 695, 257287.CrossRefGoogle Scholar
van Reeuwijk, M. & Holzner, M. 2014 The turbulence boundary of a temporal jet. J. Fluid Mech. 739, 254275.CrossRefGoogle Scholar
Veeravalli, S. & Warhaft, Z. 1989 The shearless turbulence mixing layer. J. Fluid Mech. 207, 191229.Google Scholar
Vincent, A. & Meneguzzi, M. 1994 The dynamics of vorticity tubes in homogeneous turbulence. J. Fluid Mech. 258, 245254.Google Scholar
Watanabe, T. 2024 b Enhancement of passive scalar mixing in a shear-free turbulent front, In IUTAM Symposium on Turbulent/Non-Turbulent Interface in Turbulent Shear Flows. pp. 7993. Springer.CrossRefGoogle Scholar
Watanabe, T. 2024 a Efficient enhancement of turbulent entrainment by small-scale shear instability. J. Fluid Mech. 988, A20.CrossRefGoogle Scholar
Watanabe, T., da Silva, C.B. & Nagata, K. 2019 Non-dimensional energy dissipation rate near the turbulent/non-turbulent interfacial layer in free shear flows and shear free turbulence. J. Fluid Mech. 875, 321344.Google Scholar
Watanabe, T., da Silva, C.B., Sakai, Y., Nagata, K. & Hayase, T. 2016 c Lagrangian properties of the entrainment across turbulent/non-turbulent interface layers. Phys. Fluids 28 (3), 031701.Google Scholar
Watanabe, T., Jaulino, R., Taveira, R.R., da Silva, C.B., Nagata, K. & Sakai, Y. 2017 Role of an isolated eddy near the turbulent/non-turbulent interface layer. Phys. Rev. Fluids 2 (9), 094607.CrossRefGoogle Scholar
Watanabe, T., Mori, T., Ishizawa, K. & Nagata, K. 2024 Scale dependence of local shearing motion in decaying turbulence generated by multiple-jet interaction. J. Fluid Mech. 997, A14.Google Scholar
Watanabe, T. & Nagata, K. 2023 The response of small-scale shear layers to perturbations in turbulence. J. Fluid Mech. 963, A31.CrossRefGoogle Scholar
Watanabe, T., Naito, T., Sakai, Y., Nagata, K. & Ito, Y. 2015 a Mixing and chemical reaction at high schmidt number near turbulent/nonturbulent interface in planar liquid jet. Phys. Fluids 27 (3), 035114.CrossRefGoogle Scholar
Watanabe, T., Riley, J.J. & Nagata, K. 2016 a Effects of stable stratification on turbulent/nonturbulent interfaces in turbulent mixing layers. Phys. Rev. Fluids 1 (4), 044301.Google Scholar
Watanabe, T., Sakai, Y., Nagata, K. & Ito, Y. 2016 b Large eddy simulation study of turbulent kinetic energy and scalar variance budgets and turbulent/non-turbulent interface in planar jets. Fluid Dyn. Res. 48 (2), 021407.CrossRefGoogle Scholar
Watanabe, T., Sakai, Y., Nagata, K., Ito, Y. & Hayase, T. 2014 a Enstrophy and passive scalar transport near the turbulent/non-turbulent interface in a turbulent planar jet flow. Phys. Fluids 26 (10), 105103.CrossRefGoogle Scholar
Watanabe, T., Sakai, Y., Nagata, K., Ito, Y. & Hayase, T. 2014 b Reactive scalar field near the turbulent/non-turbulent interface in a planar jet with a second-order chemical reaction. Phys. Fluids 26 (10), 105111.CrossRefGoogle Scholar
Watanabe, T., Sakai, Y., Nagata, K., Ito, Y. & Hayase, T. 2015 b Turbulent mixing of passive scalar near turbulent and non-turbulent interface in mixing layers. Phys. Fluids 27 (8), 085109.Google Scholar
Watanabe, T., Sakai, Y., Nagata, K., Terashima, O., Suzuki, H., Hayase, T. & Ito, Y. 2013 Visualization of turbulent reactive jet by using direct numerical simulation. Intl J. Model. Simul. Sci. Comput. 4 (supp01), 1341001.CrossRefGoogle Scholar
Watanabe, T., Tanaka, K. & Nagata, K. 2020 Characteristics of shearing motions in incompressible isotropic turbulence. Phys. Rev. Fluids 5 (7), 072601(R).Google Scholar
Watanabe, T., Zhang, X. & Nagata, K. 2018 Turbulent/non-turbulent interfaces detected in DNS of incompressible turbulent boundary layers. Phys. Fluids 30 (3), 035102.CrossRefGoogle Scholar
Westerweel, J., Fukushima, C., Pedersen, J.M. & Hunt, J.C.R. 2009 Momentum and scalar transport at the turbulent/non-turbulent interface of a jet. J. Fluid Mech. 631, 199230.CrossRefGoogle Scholar
Wolf, M., Lüthi, B., Holzner, M., Krug, D., Kinzelbach, W. & Tsinober, A. 2012 Investigations on the local entrainment velocity in a turbulent jet. Phys. Fluids 24 (10), 105110.CrossRefGoogle Scholar
Wu, X., Wallace, J.M. & Hickey, J.P. 2019 Boundary layer turbulence and freestream turbulence interface, turbulent spot and freestream turbulence interface, laminar boundary layer and freestream turbulence interface. Phys. Fluids 31 (4), 045104.Google Scholar
Xu, C., Long, Y. & Wang, J. 2023 Entrainment mechanism of turbulent synthetic jet flow. J. Fluid Mech. 958, A31.CrossRefGoogle Scholar
Zaman, K.B.M.Q., Reeder, M.F. & Samimy, M. 1994 Control of an axisymmetric jet using vortex generators. Phys. Fluids 6 (2), 778793.CrossRefGoogle Scholar
Zecchetto, M., Xavier, R.P., Teixeira, M.A.C. & da Silva, C.B. 2024 Generalized scaling laws for the irrotational motions bordering a turbulent region. Phys. Rev. E 109 (6), 065107.CrossRefGoogle ScholarPubMed
Zhang, X., Watanabe, T. & Nagata, K. 2019 Passive scalar mixing near turbulent/non-turbulent interface in compressible turbulent boundary layers. Phys. Scr. 94 (4), 044002.Google Scholar
Zhang, X., Watanabe, T. & Nagata, K. 2023 Reynolds number dependence of the turbulent/non-turbulent interface in temporally developing turbulent boundary layers. J. Fluid Mech. 964, A8.CrossRefGoogle Scholar
Zhdanov, V. & Chorny, A. 2011 Development of macro-and micromixing in confined flows of reactive fluids. Intl J. Heat Mass Transfer 54 (15-16), 32453255.CrossRefGoogle Scholar
Zheng, Y., Nagata, K. & Watanabe, T. 2021 Turbulent characteristics and energy transfer in the far field of active-grid turbulence. Phys. Fluids 33 (11), 115119.CrossRefGoogle Scholar
Zhuang, Y., Tan, H., Huang, H., Liu, Y. & Zhang, Y. 2018 Fractal characteristics of turbulent–non-turbulent interface in supersonic turbulent boundary layers. J. Fluid Mech. 843, R2.CrossRefGoogle Scholar