Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-20T17:25:56.283Z Has data issue: false hasContentIssue false

Influence of wind on extreme wave events: experimental and numerical approaches

Published online by Cambridge University Press:  14 December 2007

C. KHARIF
Affiliation:
Institut de Recherche sur les Phénomènes Hors Equilibre, Aix-Marseille University, [email protected]
J.-P. GIOVANANGELI
Affiliation:
Institut de Recherche sur les Phénomènes Hors Equilibre, Aix-Marseille University, [email protected]
J. TOUBOUL
Affiliation:
Institut de Recherche sur les Phénomènes Hors Equilibre, Aix-Marseille University, [email protected]
L. GRARE
Affiliation:
Institut de Recherche sur les Phénomènes Hors Equilibre, Aix-Marseille University, [email protected]
E. PELINOVSKY
Affiliation:
Institute of Applied Physics, Nizhny Novgorod, Russia

Abstract

The influence of wind on extreme wave events in deep water is investigated experimentally and numerically. A series of experiments conducted in the Large Air–Sea Interactions Facility (LASIF-Marseille, France) shows that wind blowing over a short wave group due to the dispersive focusing of a longer frequency-modulated wavetrain (chirped wave packet) may increase the time duration of the extreme wave event by delaying the defocusing stage. A detailed analysis of the experimental results suggests that extreme wave events may be sustained longer by the air flow separation occurring on the leeward side of the steep crests. Furthermore it is found that the frequency downshifting observed during the formation of the extreme wave event is more important when the wind velocity is larger. These experiments have pointed out that the transfer of momentum and energy is strongly increased during extreme wave events.

Two series of numerical simulations have been performed using a pressure distribution over the steep crests given by the Jeffreys sheltering theory. The first series corresponding to the dispersive focusing confirms the experimental results. The second series which corresponds to extreme wave events due to modulational instability, shows that wind sustains steep waves which then evolve into breaking waves. Furthermore, it was shown numerically that during extreme wave events the wind-driven current could play a significant role in their persistence.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balk, A. M. 1996 The suppression of short waves by a train of long waves. J. Fluid Mech. 315, 139150.CrossRefGoogle Scholar
Banner, M. I. 1990 The influence of wave breaking on the surface distribution in wind–wave interactions. J. Fluid Mech. 211, 463495.CrossRefGoogle Scholar
Banner, M. I. & Melville, W. K. 1976 On the separation of air flow over water waves. J. Fluid Mech. 77, 825842.CrossRefGoogle Scholar
Banner, M. I. & Song, J. 2002 On determining the onset and strength of breaking for deep water waves. Part ii: Influence of wind forcing and surface shear. J. Phys. Oceanogr. 32, 25592570.CrossRefGoogle Scholar
Banner, M. I. & Tian, X. 1998 On the determination of the onset of breaking for modulating surface gravity water waves. J. Fluid Mech. 367, 107137.CrossRefGoogle Scholar
Benjamin, T. B. & Feir, J. E. 1967 The desintegration of wave trains on deep water. Part 1. theory. J. Fluid Mech. 27, 417430.CrossRefGoogle Scholar
Bliven, L. F., Huang, N. E. & Long, S. R. 1986 Experimental study of the influence of wind on Benjamin–Feir sideband instability. J. Fluid Mech. 162, 237260.CrossRefGoogle Scholar
Calini, A. & Schober, C. M. 2002 Homoclinic chaos increases the likelihood of rogue wave formation. Phys. Lett. A 298, 335349.CrossRefGoogle Scholar
Clamond, D., Francius, M., Grue, J. & Kharif, C. 2006 Strong interaction between envelope solitary surface gravity waves. Eur. J. Mech. B/Fluids 25, 536553.CrossRefGoogle Scholar
Dias, F. & Kharif, C. 1999 Nonlinear gravity and capillary–gravity waves. Annu. Rev. Fluid Mech. 31, 301346.CrossRefGoogle Scholar
Dold, J. W. & Peregrine, D. H. 1986 Water wave modulation. In Proc. 20th Intl. Conf. Coastal Engng, ASCE, Taipei, vol. 1, pp. 163–175.Google Scholar
Dommermuth, D. G. & Yue, D. K. P. 1987 A high-order spectral method for the study of nonlinear gravity waves. J. Fluid Mech. 184, 267288.CrossRefGoogle Scholar
Dyachenko, A. I. & Zakharov, V. E. 2005 Modulational instability of Stokes wave → freak wave. Sov. Phys., J. Exp. Theor. Phys. 81 (6), 318322.Google Scholar
Dysthe, K. B. 2001 Modelling a ‘rogue wave’ – speculations or a realistic possibility? In Rogue Waves 2000 (ed. Olagnon, M. & Athanassoulis, G. A.), vol. 32, pp. 255–264. Ifremer, Brest.Google Scholar
Dysthe, K. B. & Trulsen, K. 1999 Note on breather type solutions of the nls as a model for freak waves. Phys. Scripta 82, 4852.CrossRefGoogle Scholar
Giovanangeli, J. P. 1988 A new method for measuring static pressure fluctuations with application to wind wave interaction. Exps. Fluids 6, 12211225.CrossRefGoogle Scholar
Giovanangeli, J. P. & Chambaud, P. 1987 Pressure, velocity and temperature sensitivities of a bleed-type pressure sensor. Rev. Sci. Instrum. 58, 154164.CrossRefGoogle Scholar
Giovanangeli, J. P., Kharif, C. & Pelinovsky, E. 2005 Experimental study of the wind effect on the focusing of transient wave groups. In Rogue Waves 2004 (ed. Olagnon, M. & Prevosto, M.), vol. 39. Ifremer, Brest.Google Scholar
Giovanangeli, J. P., Reul, N., Garat, M. H. & Branger, H. 1999 Some aspects of wind-wave copling at high winds: an experimental study. In Wind-over-Wave Couplings (ed. Sajjadi, S.G., Thomas, N.H. & Hunt, J.C.R.), pp 8190. Clarendon Press Oxford.CrossRefGoogle Scholar
Henderson, K. L., Peregrine, D. H. & Dold, J. W. 1999 Unsteady water wave modulations: fully nonlinear solutions and comparison with the nonlinear Schrödinger equation. Wave Motion 29, 341361.CrossRefGoogle Scholar
Janssen, P. A. E. M. 2003 Nonlinear four-wave interactions and freak waves. J. Phys. Oceanogr. 33, 863884.2.0.CO;2>CrossRefGoogle Scholar
Jeffreys, H. 1925 On the formation of wave by wind. Proc. R. Soc. Lond. A 107, 189206.Google Scholar
Kawai, S. 1982 Structure of air flow separation over wind wave crests. Boundary-Layer Met. 23, 503521.CrossRefGoogle Scholar
Kharif, C. & Pelinovsky, E. 2003 Physical mechanisms of the rogue wave phenomenon. Eur. J. Mech. B/Fluids 22, 603634.CrossRefGoogle Scholar
Kharif, C. & Ramamonjiarisoa, A. 1988 Deep water gravity wave instabilities at large steepness. Phys. Fluids 31, 12861288.CrossRefGoogle Scholar
Kharif, C., Pelinovsky, E., Talipova, T. & Slunyaev, A. 2001 Focusing of nonlinear wave groups in deep water. Sov. Phys., J. Exp. Theor. Phys. Lett. 73 (4), 170175.CrossRefGoogle Scholar
Latif, M. A. 1974 Acoustic effects on pressure measurements over water waves in the laboratory. Tech. Rep. 25. Coastal and Oceanographic Engineering Laboratory, Gainsville, Florida.Google Scholar
Li, J. C., Hui, W. H. & Donelan, M. A. 1987 Effects of velocity shear on the stability of surface deep water wave trains. In Nonlinear Water Waves (IUTAM Symp.), pp. 213220. Springer.Google Scholar
Longuet-Higgins, M. S. 1985 Bifurcation in gravity waves. J. Fluid Mech. 151, 457475.CrossRefGoogle Scholar
McLean, J. W. 1982 Instabilities of finite-amplitude water waves. J. Fluid Mech. 114, 315330.CrossRefGoogle Scholar
McLean, J. W., Ma, Y. C., Martin, D. U., Saffman, P. G. & Yuen, H. C. 1981 Three-dimensional instability of finite-amplitude water waves. Phys. Rev. Lett. 46, 817820.CrossRefGoogle Scholar
Mastenbroeck, C., Makin, V. K., Garat, M. H. & Giovanangeli, J. P. 1996 Experimental evidence of the rapid distortion of turbulence in the air flow over water waves. J. Fluid Mech. 318, 273302.CrossRefGoogle Scholar
Osborne, A. R., Onorato, M. & Serio, M. 2000 The nonlinear dynamics of rogue waves and holes in deep-water gravity wave train. Phys. Rev. A 275, 386393.Google Scholar
Papadimitrakis, Y. A., Hsu, Y. & Street, R. L. 1986 The role of wave-induced pressure fluctuations in the transfer accross an air–water interface. J. Fluid Mech. 170, 113127.CrossRefGoogle Scholar
Pelinovsky, E., Talipova, T. & Kharif, C. 2000 Nonlinear dispersive mechanism of the freak wave formation in shallow water. Physica D 147, 8394.Google Scholar
Reul, N., Branger, H. & Giovanangeli, J.-P. 1999 Air flow separation over unsteady breaking waves. Phys. Fluids 11, 19591961.CrossRefGoogle Scholar
Skandrani, C., Kharif, C. & Poitevin, J. 1996 Nonlinear evolution of water surface waves: The frequency downshifting phenomenon. Contemp. Maths 200, 157171.CrossRefGoogle Scholar
Slunyaev, A., Kharif, C., Pelinovsky, E. & Talipova, T. 2002 Nonlinear wave focusing an water of finite depth. Physica D 173, 7796.Google Scholar
Song, J. & Banner, M. I. 2002 On determining the onset and strength of breaking for deep water waves. part I: Unforced Irrotational Wave Groups. J. Phys. Oceanogr. 32, 25412558.CrossRefGoogle Scholar
Torrence, C. & Compo, G. P. 1998 A practical guide to wavelet analysis. Bull. Am. Met. Soc. 79, 6178.2.0.CO;2>CrossRefGoogle Scholar
Touboul, J., Giovanangeli, J. P., Kharif, C. & Pelinovsky, E. 2006 Freak waves under the action of wind: experiments and simulations. Eur. J. Mech. B/Fluids 25, 662676.CrossRefGoogle Scholar
Touboul, J., Pelinovsly, E. & Kharif, C. 2007 Nonlinear focusing wave groups on current. J. Korean Soc. Coastal Ocean Engng 19 (3), 222227.Google Scholar
Waseda, T. & Tulin, M. P. 1999 Experimental study of the stability of deep-water wave trains including wind effects. J. Fluid Mech. 401, 5584.CrossRefGoogle Scholar
Whitham, G. B. 1967 Nonlinear dispersion of water waves. J. Fluid Mech. 27, 399412.CrossRefGoogle Scholar
Zakharov, V. E. 1968 Stability of periodic waves of finite amplitude on the surface of deep water. J. Appl. Mech. Tech. Phys. 9, 190194.CrossRefGoogle Scholar