Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-19T15:21:29.880Z Has data issue: false hasContentIssue false

Influence of wall suction on the organized motion in a turbulent boundary layer

Published online by Cambridge University Press:  21 April 2006

R. A. Antonia
Affiliation:
Department of Mechanical Engineering, University of Newcastle, NSW, 2308, Australia
L. Fulachier
Affiliation:
Institut de Mécanique Statistique de la Turbulence, Université d’ Aix-Marseille, 13003 Marseille, France
L. V. Krishnamoorthy
Affiliation:
Institut de Mécanique Statistique de la Turbulence, Université d’ Aix-Marseille, 13003 Marseille, France
T. Benabid
Affiliation:
Institut de Mécanique Statistique de la Turbulence, Université d’ Aix-Marseille, 13003 Marseille, France
F. Anselmet
Affiliation:
Institut de Mécanique Statistique de la Turbulence, Université d’ Aix-Marseille, 13003 Marseille, France

Abstract

The effect of wall suction on the organized motion of a tubulent boundary layer is examined experimentally both in a wind tunnel and in a water tunnel. In the windtunnel boundary layer, which developed over a slighly heated surface, temperature fluctuations were simultaneously obtained at several points, aligned in either the x (streamwise) or y (normal to the wall) direction. The temperature traces reveal the existence of two spatially coherent events, characterized either by a sudden decrease (cooling) or by a sudden increase (heating) of temperature. Estimates are presented for the average convection velocity, and average frequency of these events. The average convection velocity of ‘coolings’ is about 15% larger than that of ‘heatings’, the velocity of both events exhibiting an important local maximum in the buffer region. Near the wall, the convection velocity of both events is increased slightly by suction while their average frequency is reduced by suction. Away from the wall, the average inclination of ‘coolings’ and ‘heatings’ is about 40° without suction; suction does not alter the inclination of ‘coolings’ but increases that of ‘heatings’ to about 50°. Visualizations in the water tunnel indicate that suction increases the stability and the longitudinal coherence of low-speed streaks. They also show that suction reduces the average frequency of dye ejections into the outer layer.

Type
Research Article
Copyright
© 1988 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aggarwal, J. K., Hollingsworth, H. A. & Mayhew, Y. R. 1972 Experimental friction factors for turbulent flow with suction in a porous tube. Intl J. Heat Mass Transfer 15, 1585.Google Scholar
Antonia, R. A., Browne, L. W. B. & Chambers, A. J. 1981 Determination of time constants of cold wires. Rev. Sci. Instrum. 52, 13821385.Google Scholar
Antonia, R. A., Browne, L. W. B., Rajagopalan, S. & Chambers, A. J. 1983 On the organized motion of a turbulent plane jet. J. Fluid Mech. 134, 4966.Google Scholar
Antonia, R. A., Chambers, A. J., Friehe, C. A. & Van Atta, C. W. 1979 Temperature ramps in the atmospheric surface layer. J. Atmos. Sci. 36, 101108.Google Scholar
Bisset, D. K., Browne, L. W. B. & Antonia, R. A. 1986 Detection of structures in turbulent shear flows. Rep. T. N. FM 86/1, Department of Mechanical Engineering, University of Newcastle, NSW.
Blackwelder, R. F. & Kaplan, R. E. 1976 On the wall structure of a turbulent boundary layer. J. Fluid Mech. 76, 89112.Google Scholar
Brosh, A. & Winograd, Y. 1974 Experimental study of turbulent flow in a tube with wall suction. Trans. ASME C: J. Heat Transfer 94, 338342.Google Scholar
Brun, E. A., Martinot-Largarde, A. & Mathieu, J. 1970 Mécanique des Fluides III: Exemples de Phénomènes Instationnaires. Couche Limite et Ecoulements Visqueux. Paris: Dunod.
Cantwell, B. J. 1981 Organised motion in turbulent flow. Ann. Rev. Fluid Mech. 13, 457515.Google Scholar
Chen, C.-H. P. & Blackwelder, R. F. 1978 Large-scale motion in a turbulent boundary layer: a study using temperature contamination. J. Fluid Mech. 89, 131.Google Scholar
Clauser, F. H. 1956 The turbulent boundary layer. Adv. Appl. Mech. 4, 151.Google Scholar
Corino, E. R. & Brodkey, R. S. 1969 A visual study of turbulent shear flow. J. Fluid Mech. 37, 130.Google Scholar
Dumas, R., Domptail, C. & Daien, E. 1982 Hydrodynamic visualization of some turbulent flow structures. In Flow Visualization II (ed. W. Merzkirch), pp. 393397. Hemisphere.
Eléna, M. 1975 Etude des champs dynamique et thermique d'un ecoulement turbulent en conduite avec aspiration à la paroi. Thèse de Doctorat ès Sciences, IMST, Université d'Aix-Marseille II.
Eléna, M. 1984 Suction effects on turbulence statistics in a heated pipe flow. Phys. Fluids 27, 861866.Google Scholar
Favre, A., Dumas, R., Verollet, E. & Coantic, M. 1966 Couche limite turbulente sur paroi poreuse avec aspiration. J. Méc. 5, 328.Google Scholar
Fulachier, L. 1972 Contribution à l'étude des analogies des champs dynamique et thermique dans une couche limite turbulente. Effet de l'aspiration. Thèse de Doctorat ès Sciences, Université de Provence.
Fulachier, L., Benabid, T., Anselmet, F., Antonia, R. A. & Krishnamoorthy, L. V. 1987 Behaviour of coherent structures in a turbulent boundary layer with wall suction. In Advances in Turbulence (ed. G. Comte-Bellot & J. Mathieu), pp. 399407. Springer.
Fulachier, L., Eléna, M., Verollet, E. & Dumas, R. 1982 Suction effects on the structure of the turbulent boundary layer on a heated porous wall. In Structure of Turbulence in Heat & Mass Transfer (ed. Z. P. Zaric), pp. 193220. Hemisphere.
Fulachier, L., Verollet, E. & Dekeyser, I. 1977 Résultats expérimentaux concernant une couche limite turbulence avec aspiration et chauffage à la paroi. Intl. J. Heat Mass Transfer 20, 731739.Google Scholar
Head, M. R. & Bandyopadhyay, P. 1981 New aspects of turbulent boundary-layer structure. J. Fluid Mech. 107, 297338.Google Scholar
Hishida, M. & Nagano, Y. 1978 Simultaneous measurements of velocity and temperature in nonisothermal flows. Trans. J. ASME C: J. Heat Transfer 100, 340345.Google Scholar
Iritani, Y., Kasagi, N. & Hirata, M. 1985 Heat transfer mechanism and associated turbulence structure in the near-wall region of a turbulent boundary layer. In Turbulent Shear Flows 4 (ed. L. J. S. Bradbury, F. Durst, B. E. Launder, F. W. Schmidt & J. H. Whitelaw), pp. 223234. Springer.
Kays, W. M. 1966 Convective Heat and Mass Transfer. McGrew-Hill.
Klebanoff, P. S. 1955 Characteristics of turbulence in a boundary layer with zero pressure gradient. NACA Rep. TN-1247.
Kline, S. J. 1978 The role of visualization in the study of the structure of the turbulent boundary layer. In Coherent Structure of Turbulent Boundary Layers (ed. C. R. Smith & D. E. Abbott), pp. 126. AFOSR/Lehigh University Workshop.
Kline, S. J. & McLintock, F. A. 1953 Describing uncertainties in single-sample experiments. Mech. Engng 75, 38.Google Scholar
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30, 741773.Google Scholar
Kline, S. J. & Runstadler, P. W. 1959 Some preliminary results of visual studies of the flow model of the wall layers of the turbulent boundary layer. Trans. ASME E: J. Appl. Mech. 2, 166170.Google Scholar
Kreplin, H.-P. & Eckelmann, H. 1979a Behaviour of the three fluctuating velocity components in the wall region of a turbulent channel flow. Phys. Fluids 22, 12331239.Google Scholar
Kreplin, H.-P. & Eckelmann, H. 1979b Propagation of perturbations in the viscous sublayer and adjacent wall region. J. Fluid Mech. 95, 305322.Google Scholar
Krishnamoorthy, L. V. & Antonia, R. A. 1986 Temperature variance and kinetic energy budgets in the near-wall region of a turbulent boundary layer. In Proc. 9th Australasian Fluid Mechanics Conference, pp. 121124. Auckland.
Moin, P. & Kim, J. 1985 The structure of the vorticity fields in turbulent channel flow. Part 1. Analysis of instantaneous fields and statistical correlations. J. Fluid Mech. 155, 441464.Google Scholar
Nakagawa, H. & Nezu, I. 1981 Structure of space-time correlations of bursting phenomena in an open-channel flow. J. Fluid Mech. 104143.Google Scholar
Py, B. 1973 Etude tridimensionnelle de la sous-couche visqueuse dans une veine rectangulaire par des mesures de transfert de matière en paroi. Intl J. Heat Mass Transfer 16, 129144.Google Scholar
Ramnefors, M. O. & Nyden, O. B. 1984 The effect of suction or injection on coherent structures in a turbulent boundary layer. In Proc. 9th Symposium on Turbulence, pp. 41 to 410. University of Missouri–Rolla.
Richardson, F. M. & Beatty, K. O. 1959 Patterns in turbulent flow in the wall adjacent region. Phys. Fluids 2, 718719.Google Scholar
Schildknecht, M., Miller, J. A. & Meier, G. E. A. 1979 The influence of suction on the structure of turbulence in fully developed pipe flow. J. Fluid Mech. 90, 67107.Google Scholar
Sirkar, K. K. & Hanratty, T. J. 1970 The limiting behaviour of the turbulent transverse velocity component close to a wall. J. Fluid Mech. 44, 605614.Google Scholar
Smith, C. R. & Metzler, S. P. 1983 The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer. J. Fluid Mech. 129, 2754.Google Scholar
Smith, C. R. & Schwartz, S. P. 1983 Observation of streamwise rotation in the near-wall region of a turbulent boundary layer. Phys. Fluids 26, 641652.Google Scholar
Smits, A. J. & Wood, D. H. 1985 The response of turbulent boundary layers to sudden perturbations. Ann. Rev. Fluid Mech. 17, 321358.Google Scholar
Stevenson, T. N. 1963 A law of the wall for turbulent boundary layers with suction or injection, Aero Rep. 166. Cranfield College of Aeronautics.
Subramanian, C. S. & Antonia, R. A. 1979 Some properties of the large-scale structure in a slightly heated turbulent boundary layer. In Proc. 2nd Intl Symp. on Turbulent Shear Flow, pp. 4.184.21. London.
Subramanian, C. S., Rajagopalan, S., Antonia, R. A. & Chambers, A. J. 1982 Comparison of conditional sampling and averaging techniques in a turbulent boundary layer. J. Fluid Mech. 123, 335362.Google Scholar
Tani, I. 1969 Review of some experimental results on the response of a turbulent boundary layer to sudden perturbations. In Proc. 1968 AFOSR-IFP-Stanford Conf. on Computation of Turbulent Boundary Layers, Vol. I, pp. 483494.
Verollet, E. 1972 Etude d'une couche limite turbulente avec aspiration et chauffage à la paroi. Thèse de Doctorat ès Sciences, Université de Provence.
Verollet, E., Fulachier, L. & Dekeyser, I. 1977 Etude phénoménologique d'une couche limite turbulente avec aspiration et chauffage à la paroi. IntlJ. Heat Mass Transfer 20, 107112.Google Scholar
Wallace, J. M. 1982 On the structure of bounded turbulent shear flows: a personal view. Developments in Theoretical and Applied Mechanics, vol. XI (ed. T. J. Chung & G. R. Karr), pp. 509521. University of Alabama at Huntsville.
Wallace, J. M. 1985 The vortical structure of bounded turbulent shear flows. In Flow of Real Fluid. Lecture Notes in Physics, vol. 235, (ed. G. E. A. Meier and F. Obermeier), pp. 253268. Springer.
Wallace, J. M., Eckelmann, H. & Brodkey, R. S. 1972 The wall region in turbulent shear flow. J. Fluid Mech. 54, 3948.Google Scholar