Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-08T21:49:39.161Z Has data issue: false hasContentIssue false

Influence of thermosolutal convection on the solidification front during upwards solidification

Published online by Cambridge University Press:  26 April 2006

H. Nguyen Thi
Affiliation:
Laboratoire de Physique Cristalline (UA au CNRS n° 797), Faculté des Sciences de St Jérôme, Case 151, Av. Normandie-Niemen, 13397 Marseille Cedex 13, France
B. Billia
Affiliation:
Laboratoire de Physique Cristalline (UA au CNRS n° 797), Faculté des Sciences de St Jérôme, Case 151, Av. Normandie-Niemen, 13397 Marseille Cedex 13, France
H. Jamgotchian
Affiliation:
Laboratoire de Physique Cristalline (UA au CNRS n° 797), Faculté des Sciences de St Jérôme, Case 151, Av. Normandie-Niemen, 13397 Marseille Cedex 13, France

Abstract

For some years now, much effort has been devoted to the study of thermosolutal convection in the liquid phase during upwards solidification of a binary alloy, which is coupled to the dynamics of the solid-liquid interface. While the theoretical analysis is well developed, there is a need for experimental evidence. Experiments in cylinders have thus been carried out on lead – 30 wt % thallium alloys in order to obtain significant information about the convective patterns in the melt adjacent to the solidification front, from a knowledge of the macroscopic shape of the phase boundary. This shape is determined as a function of the lateral confinement θ (the ratio of the crucible diameter to the unstable wavelength at the threshold for an infinite medium) from a series of contour lines for the solid in the two-phase region of the quenched samples. When θ is small, the pattern always has a central axisymmetric core and an outer annulus which is at first complex or structureless and then presents a mixture of festoons and solid sectors. For θ very close to unity, a hexagon, which is the basic element of a laterally infinite array, dominates the morphology. At higher θ, a hexagon can no longer remain naturally centred and is replaced by two main cells which contact the wall by again making a completely festooned ring. The fluid flow in the liquid just ahead of the solid-liquid interface is then inferred. Analogy with Bénard-Marangoni patterns suggests a qualitative analysis of the convective structures. The present observations are finally compared to previous ones on similar alloys grown in crucibles with a smaller diameter.

Type
Research Article
Copyright
© 1989 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Azouni, M. A.: 1981 PhysicoChem. Hydrodyn. 2, 295.
Billia, B., Jamgotchian, H., Favier, J. J. & Camel, D., 1987 In Scientific Results of the German Spacelab Mission D1 (ed. P. R. Sahm, R. Jansen & M. H. Keller), p. 230. DFVLR.
Burden, M. H., Hebditch, D. J. & Hunt, J. D., 1974 J. Cryst. Growth 20, 121.
Caroli, B., Caroli, C., Misbah, C. & Roulet, B., 1985 J. Phys. Paris 46, 1657.
Cerisier, P., Perez-Garcia, C., Jamond, C. & Pantaloni, J., 1985 Phys. Lett. A112, 366.
Coriell, S. R., Cordes, W. J., Boettinger, W. J. & Sekerka, R. F., 1980 J. Cryst. Growth 49, 13.
Coriell, S. R., McFadden, G. B. & Sekerka, R. F., 1985 Ann. Rev. Mater. Sci. 15, 119.
Davis, S. H., Müller, U. & Dietsche, C. 1984 J. Fluid Mech. 144, 133.
Dietsche, C. & Müller, U. 1985 J. Fluid Mech. 161, 249.
Dupouy, M. D., Camel, D. & Favier, J. J., 1989 Acta Metall. 37, 1143.
Glicksman, M. E., Coriell, S. R. & McFadden, G. B., 1986 Ann. Rev. Fluid Mech. 18, 307.
Eckhaus, W.: 1965 Studies in Non-linear Stability Theory. Springer.
Guérin, R. Z., Billia, B., Haldenwang, P. & Roux, B., 1987 In Proc. 6th European Symp. on Material Sciences under Microgravity Conditions (ed. W. R. Burke), p. 367. ESA-SP 256.
Hennenberg, M., Rouzaud, A., Favier, J. J. & Camel, D., 1987 J. Phys. Paris 48, 173.
Hurle, D. T. J.: 1977 In Crystal Growth and Materials (ed. E. Kaldis & H. J. Scheel), p. 550. North-Holland.
Hurle, D. T. J., Jakeman, E. & Wheeler, A. A., 1982 J. Cryst. Growth 58, 163.
Jamgotchian, H., Billia, B. & Capella, L., 1983 J. Cryst. Growth 62, 539.
Jamgotchian, H., Billia, B. & Capella, L., 1987a J. Cryst. Growth 82, 342.
Jamgotchian, H., Billia, B. & Capella, L., 1987b J. Cryst. Growth 85, 318.
Jenkins, D. R.: 1985a IMA J. Appl. Maths 35, 145.
Jenkins, D. R.: 1985b PhysicoChem. Hydrodyn. 6, 521.
McCartney, D. G. & Hunt, J. D., 1981 Acta Metall. 29, 1851.
McFadden, G. B., Coriell, S. R. & Boisvert, R. F., 1985 Phys. Fluids 28, 2716.
Pantaloni, J., Velarde, M. G., Bailleux, R. & Guyon, E., 1977 C. R. Acad. Sci. Paris B 285, 275.
Pimputkar, S. M. & Ostrach, S., 1981 J. Cryst. Growth 55, 614.
Pomeau, Y., Zaleski, S. & Manneville, P., 1985 Z. Angew. Math. Phys. 36, 367.
Rosenblat, S., Davis, S. H. & Homsy, G. M., 1982 J. Fluid Mech. 120, 91.
Schaefer, R. J. & Coriell, S. R., 1984 Metall. Trans. A 15, 2109.
Soberman, R. K.: 1958 J. Appl. Phys. 29, 872.
Turner, J. S.: 1973 Buoyancy Effects in Fluids, Chap. 8. Cambridge University Press.
Vashkevich, O. V., Gaponov-Grekhov, A. V., Ezerskii, A. B. & Rabinovich, M. I., 1987 Dokl. Akad. Nauk. SSSR 294, 563.
Verhoeven, J. D., Mason, J. T. & Trivedi, R., 1986 Metall. Trans. A 17, 991.