Hostname: page-component-599cfd5f84-2stsh Total loading time: 0 Render date: 2025-01-07T06:26:00.909Z Has data issue: false hasContentIssue false

The influence of nonlinear bottom friction on the properties of decaying cyclonic and anticyclonic vortex structures in a shallow rotated fluid

Published online by Cambridge University Press:  18 July 2014

S. V. Kostrykin*
Affiliation:
A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, 119017, Russia Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, 119333, Russia
A. A. Khapaev
Affiliation:
A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, 119017, Russia
I. G. Yakushkin
Affiliation:
A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, 119017, Russia
*
Email address for correspondence: [email protected]

Abstract

The problem of the decay of intense vortices in a shallow rotated neutrally stratified fluid is considered using simulations with a modified model of von Kármán type and laboratory experiments. The numerical model describes a forced axisymmetric vortex, vertically confined, but infinite in the horizontal plane. It may be used for comparisons with laboratory experiments, in which a quasi-turbulent eddy flow is generated, using magnetohydrodynamic forcing. A detailed analysis of simulations of the free decay of the flow from an initial state, given either by an arbitrary Poiseuille or by a forced stationary profile of vorticity, is provided. Based on this analysis, three different regimes of decay of intense anticyclones in the parameter space of the Ekman and initial Rossby numbers are found. It is shown that anticyclones with large enough Rossby and small enough Ekman numbers may decay to a non-trivial stationary state, or at least they decay much slower than cyclones of the same intensity. The laboratory experiments show much slower decay of intense anticyclones than weak anticyclones or cyclones, and also a dominance of anticyclones over cyclones during the initial stage of decay. These observations qualitatively agree with theoretical predictions.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afanasyev, Ya. D. 2002 Experiments on instability of columnar vortex pairs in rotating fluid. Geophys. Astrophys. Fluid Dyn. 96 (1), 3148.CrossRefGoogle Scholar
Akkermans, R. A. D., Cieslik, A. R., Kamp, L. P. J., Trieling, R. R., Clercx, H. J. H. & van Heijst, G. J. F. 2008 The three-dimensional structure of an electromagnetically generated dipolar vortex in a shallow fluid layer. Phys. Fluids 20, 116601.CrossRefGoogle Scholar
Aristov, S. N., Knyazev, D. V. & Polyanin, A. D. 2009 Exact solutions of the Navier–Stokes equations with the linear dependence of velocity components on two space variables. Theor. Found. Chem. Engng 43, 642662.CrossRefGoogle Scholar
Bannon, P. R. 1997 A comparison of Ekman pumping in approximate models of the accelerating planetary boundary layer. J. Atmos. Sci. 55, 14461451.2.0.CO;2>CrossRefGoogle Scholar
Cieslik, A. R., Kamp, L. P. J., Clercx, H. J. H. & van Heijst, G. J. F. 2010 Three-dimensional structures in a shallow flow. J. Hydro-Environ. Res. 4, 89101.CrossRefGoogle Scholar
Danilov, S. D., Dolzhanskii, F. V., Dovzhemko, V. A. & Krymov, V. A. 2002 Experiments on free decay of quasi-two-dimensional turbulent flows. Phys. Rev. E 65, 036316.CrossRefGoogle ScholarPubMed
Danilov, S. D. & Gurarie, D. 2000 Quasi-two-dimensional turbulence. Phys. Uspekhi 43, 863900.CrossRefGoogle Scholar
Davidson, P. A., Staplehurst, P. J. & Dalziel, S. B. 2006 On the evolution of eddies in a rapidly rotating system. J. Fluid Mech. 557, 135144.CrossRefGoogle Scholar
Dolzhanskii, F. V. 1999 Transverse structures of quasi-two-dimensional geophysical and magnetohydrodynamic flows. Izv. Atmos. Ocean. Phys. 35, 147156.Google Scholar
Dolzhanskii, F. V., Krymov, V. A. & Manin, D. Yu. 1990 Stability and vortex structures of quasi-two-dimensional shear flows. Sov. Phys. Uspekhi 33, 495520.CrossRefGoogle Scholar
Dolzhanskii, F. V., Krymov, V. A. & Manin, D. Yu. 1992 An advanced experimental investigation of quasi-two-dimensional shear flows. J. Fluid Mech. 241, 705722.CrossRefGoogle Scholar
Duran-Matute, M., Kamp, L. P. J., Trieling, R. R. & van Heijst, G. J. F. 2009 Inertial oscillations in a confined monopolar vortex subjected to background rotation. Phys. Fluids 21, 116602.CrossRefGoogle Scholar
Duran-Matute, M., Kamp, L. P. J., Trieling, R. R. & van Heijst, G. J. F. 2012 Regimes of two-dimensionality of decaying shallow axisymmetric swirl flows with background rotation. J. Fluid Mech. 691, 214244.CrossRefGoogle Scholar
Duran-Matute, M., Di Nitto, G., Trieling, R. & van Heijst, G. J. F.2011 Transition from quasi-2D to 3D in a rotating electromagnetically forced dipolar flow structure. EUROMECH Colloquium 525, 21–23 June 2011, Ecully, France.Google Scholar
van Eeten, K. M. P., van der Schaaf, J., Schouten, J. C. & van Heijst, G. J. F. 2012 Boundary layer development in the flow field between a rotating and a stationary disk. Phys. Fluids 24 (3), 033601.CrossRefGoogle Scholar
Elhmaidi, D., Provenzale, A. & Babiano, A. 1993 Elementary topology of two-dimensional turbulence from a Lagrangian viewpoint and single-particle dispersion. J. Fluid Mech. 257, 533558.CrossRefGoogle Scholar
Espa, S., Di Nitto, G. & Cenedese, A. 2011 Laboratory study of forced rotating shallow water turbulence. J. Phys.: Conf. Ser. 318, 082020.Google Scholar
Goloviznin, V. M., Karabasov, S. A. & Kobrinskii, I. M. 2003 Balance-characteristic schemes with separated conservative and flux variables. Mat. Model. 15 (9), 2948.Google Scholar
Graves, L. P., McWilliams, J. C. & Montgomery, M. T. 2006 Vortex evolution due to straining: a mechanism of dominance of strong interior anticyclones. Geophys. Astrophys. Fluid Dyn. 100, 151183.CrossRefGoogle Scholar
Greenspan, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.Google Scholar
Hakim, G. J. & Canavan, A. K. 2005 Observed cyclone–anticyclone tropopause vortex asymmetries. J. Atmos. Sci. 62, 231240.CrossRefGoogle Scholar
Hart, J. E. 2000 A note on nonlinear corrections to the Ekman layer pumping velocity. Phys. Fluids 12, 131135.CrossRefGoogle Scholar
van Heijst, G. J. F. & Clercx, H. J. H. 2009 Studies on quasi-2D turbulence – the effect of boundaries. Fluid Dyn. Res. 41, 064002.CrossRefGoogle Scholar
Hewitt, R. E. & Al-Azhari, M. 2009 Non-axisymmetric self-similar flow between two rotating disks. J. Engng Maths 63, 259277.CrossRefGoogle Scholar
Ishida, S. I. & Iwayama, T. 2006 A comprehensive analysis of nonlinear to the classical Ekman pumping. J. Met. Soc. Japan 84, 839851.CrossRefGoogle Scholar
Kalashnik, M. V. 2011 The effect of cyclone–anticyclone asymmetry at small Rossby numbers. Izv. Atmos. Ocean. Phys. 47, 430438.CrossRefGoogle Scholar
Kamp, L. P. J. 2012 Strain-vorticity induced secondary motion in shallow flows. Phys. Fluids 24, 023601.CrossRefGoogle Scholar
Kelley, D. H. & Ouellette, N. T. 2011 Onset of three-dimensionality in electromagnetically driven thin-layer flows. Phys. Fluids 23, 045103.CrossRefGoogle Scholar
Klein, R. & Potherat, A. 2010 Appearance of three dimensionality in wall-bounded MHD flows. Phys. Rev. Lett. 104, 034502.CrossRefGoogle ScholarPubMed
Kloosterziel, R. C. & van Heijst, G. J. F. 1991 An experimental study of unstable barotropic vortices in a rotating fluid. J. Fluid Mech. 223, 124.CrossRefGoogle Scholar
Kloosterziel, R. C. & van Heijst, G. J. F. 1992 The evolution of stable barotropic vortices in a rotating free-surface fluid. J. Fluid Mech. 239, 607629.CrossRefGoogle Scholar
Kostrykin, S. V., Khapaev, A. A. & Yakushkin, I. G. 2011 Vortex patterns in quasi-two-dimensional flows of a viscous rotating fluid. J. Expl Theor. Phys. 112, 510515.Google Scholar
Kostrykin, S. V., Khapaev, A. A. & Yakushkin, I. G. 2012 On the decay law of quasi-two-dimensional turbulence. JETP Lett. 95, 583588.CrossRefGoogle Scholar
Koszalka, I., Bracco, A., McWilliams, J. C. & Provenzale, A. 2009 Dynamics of wind-forced anticyclones in the open ocean. J. Geophys. Res. 114, C08011.Google Scholar
Kuo, A. C. & Polvani, L. M. 2000 Nonlinear geostrophic adjustment, cyclone/anticyclone asymmetry and potential vorticity arrangement. Phys. Fluids 12, 10871100.CrossRefGoogle Scholar
Moisy, F., Morize, C., Rabaud, M. & Sommeria, J. 2011 Decay laws, anisotropy and cyclone–anticyclone asymmetry in decaying rotating turbulence. J. Fluid Mech. 666, 535.CrossRefGoogle Scholar
Orlandi, P. & Carnevale, G. F. 1999 Evolution of isolated vortices in a rotating fluid of finite depth. J. Fluid Mech. 381, 239269.CrossRefGoogle Scholar
Pedlosky, J. 1987 Geophysical Fluid Dynamics, 2nd edn. Springer.CrossRefGoogle Scholar
Perret, G., Stegner, A., Farge, M. & Pichon, T. 2006 Cyclone–anticyclone asymmetry of large-scale wakes in the laboratory. Phys. Fluids 18, 036603.CrossRefGoogle Scholar
Ponomarev, V. M., Khapaev, A. A. & Yakushkin, I. G. 2008 Vertical structure of the quasi-two-dimensional velocity field of a viscous incompressible flow and the problem of nonlinear friction. Izv. Atmos. Ocean. Phys. 44, 18.CrossRefGoogle Scholar
Ponomarev, V. M., Khapaev, A. A. & Yakushkin, I. G. 2009 Nonlinear Ekman friction and asymmetry of cyclonic and anticyclonic coherent structures in geophysical flows. Dokl. Earth Sci. 425, 510515.CrossRefGoogle Scholar
Roullet, G. & Klein, P. 2010 Cyclone–anticyclone asymmetry in geophysical turbulence. Phys. Rev. Lett. 104, 218501.CrossRefGoogle ScholarPubMed
Shats, M. G., Byrne, D. & Xia, H. 2010 Turbulent decay rate as a measure of flow dimensionality. Phys. Rev. Lett. 105, 264501.CrossRefGoogle ScholarPubMed
Sipp, D., Lauga, E. & Jacquin, L. 1999 Vortices in rotating systems: centrifugal, elliptic and hyperbolic type instabilities. Phys. Fluids 11 (12), 37163728.CrossRefGoogle Scholar
Staplehurst, P. J., Davidson, P. A. & Dalziel, S. B. 2008 Structure formation in homogeneous freely rotating turbulence. J. Fluid Mech. 598, 81105.CrossRefGoogle Scholar
Willett, C. S., Leben, R. R. & Lavin, M. F. 2006 Eddies and tropical instability waves in the eastern tropical Pacific. Prog. Oceanogr. 69, 218238.CrossRefGoogle Scholar
Zandbergen, P. J. & Dijkstra, D. 1987 Von Kármán swirling flows. Annu. Rev. Fluid Mech. 19, 465491.CrossRefGoogle Scholar
Zavala Sansón, L. & van Heijst, G. J. F. 2000 Nonlinear Ekman effects in rotating barotropic flows. J. Fluid Mech. 412, 7591.CrossRefGoogle Scholar