Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T16:08:48.648Z Has data issue: false hasContentIssue false

The influence of drift flow turbulence on surface gravity wave propagation

Published online by Cambridge University Press:  26 April 2006

A. L. Fabrikant
Affiliation:
Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod Present address: Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA.
M. A. Raevsky
Affiliation:
Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod

Abstract

The theory of surface gravity waves scattering at vortex flows in the ocean is developed in this paper. A scattering amplitude is found in the Born approximation as a function of vorticity which appears very convenient for investigation of scattering at simple localized flows. It is shown that the wave scattering cross-section is determined by the vertical component of vorticity. For a random (turbulent) vortex field the scattering cross-section per unit voume is determined by a vorticity correlation function. The damping of the coherent wave component and the angular spectrum widening are calculated for multiple scattering by vortex turbulence of drift flows. The spectrum angular width evolution for waves scattered at self-similar vortices of the logarithmic boundary layer is determined only by its dynamical speed and the wave vector. The latter result may be used for a remote sensing of oceanic turbulent drift flows based on observations of surface waves.

Type
Research Article
Copyright
© 1994 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnett, J. P. & Kenyon, K. E. 1975 Rep. Prog. Phys. 38, 667729.
Batchelor, G. K. 1970 An Introduction to Fluid Dynamics. Cambridge University Press.
Fabrikant, A. L. 1983 Sov. Phys. Acoust. 29, 262267.
Gromov, P. R., Ezersky, A. B. & Fabrikant, A. L. 1982 Sov. Phys. Acoust. 28, 763769.
Hasselmann, K. et al. 1988 J. Phys. Oceanogr. 18, 17751810.
Hayes, J. G. 1980 J. Geophys. Res. 85, 50255031.
Jones, I. S. F. & Kenney, B. C. 1977 J. Geophys. Res. 82, 13921396.
Kader, B. A. 1984 Izv. Acad. Nauk. SSSR. Mech. Zhid. i Gaza n. 1.
Kitaigorodskii, S. A. & Lumley, J. L. 198 J. Phys. Oceanogr. 13, 19771987.
Kononkova, G. E. 1969 Sea Waves Dynamics. Moscow University Press.
Lamb, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press.
Landau, L. D. & Lifshits, E. M. 1987 Fluids Dynamics. Pergamon.
Lin, J. T. & Gad-el-Hak, M. 1984 J. Geophys. Res. 39, 627636.
Longuet-Higgins, M. S. 1992 J. Fluid Mech. 240, 659679.
Monin, A. S. & Ozmidov, R. V. 1981 Turbulence in the Ocean. Dordrecht.
Phillips, O. M. 1959 J. Fluid Mech. 5, 177192.
Phillips, O. M. 1977 The Dynamics of the Upper Ocean. Cambridge University Press.
Phillips, O. M. 1984 J. Phys. Oceanogr. 14, 14251433.
Raevsky, M. A. 1983 Izv. Atmos. Ocean. Phys. 19, (6), 475479.
Rytov, S. M., Kravtsov, Yu. A. & Tatarsky, V. I. 1978 Principles of Statistical Radiophysics, pt. 4. Springer.
Sazontov, A. G. & Shagalov, S. V. 1986 Izv. Atmos. Ocean. Phys. 22 (2), 138143.
Sheres, D. & Kenyon, K. E. 1990 Intl J. Remote Sens. 11, 2740.
Wu, J. 1975 J. Fluid Mech. 68, 4970.