Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T16:23:46.210Z Has data issue: false hasContentIssue false

Inertial range Eulerian and Lagrangian statistics from numerical simulations of isotropic turbulence

Published online by Cambridge University Press:  02 June 2010

R. BENZI
Affiliation:
Department of Physics and INFN, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
L. BIFERALE*
Affiliation:
Department of Physics and INFN, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
R. FISHER
Affiliation:
Department of Physics, University of Massachusetts at Dartmouth, 285 Old Westport Road, Dartmouth, MA 02740, USA
D. Q. LAMB
Affiliation:
Center for Astrophysical Thermonuclear Flashes, The University of Chicago, Chicago, IL 60637, USA and Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637, USA
F. TOSCHI
Affiliation:
Department of Physics and Department of Mathematics and Computer Science, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands and Istituto per le Applicazioni del Calcolo CNR, Viale del Policlinico 137, 00161 Rome, Italy
*
Email address for correspondence: [email protected]

Abstract

We present a study of Eulerian and Lagrangian statistics from a high-resolution numerical simulation of isotropic and homogeneous turbulence using the FLASH code, with an estimated Taylor microscale Reynolds number of around 600. Statistics are evaluated over a data set with 18563 spatial grid points and with 2563 = 16.8 million particles, followed for about one large-scale eddy turnover time. We present data for the Eulerian and Lagrangian structure functions up to the tenth order. We analyze the local scaling properties in the inertial range. The Eulerian velocity field results show good agreement with previous data and confirm the puzzling differences previously found between the scaling of the transverse and the longitudinal structure functions. On the other hand, accurate measurements of sixth-and-higher-order Lagrangian structure functions allow us to highlight some discrepancies from earlier experimental and numerical results. We interpret this result in terms of a possible contamination from the viscous scale, which may have affected estimates of the scaling properties in previous studies. We show that a simple bridge relation based on a multifractal theory is able to connect scaling properties of both Eulerian and Lagrangian observables, provided that the small differences between intermittency of transverse and longitudinal Eulerian structure functions are properly considered.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexakis, A., Calder, A. C., Heger, A., Brown, E. F., Dursi, L. J., Truran, J. W., Rosner, R., Lamb, D. Q., Timmes, F. X., Fryxell, B., Zingale, M., Ricker, P. M. & Olson, K. 2004 On heavy element enrichment in classical novae. Astrophys. J. 602, 931.CrossRefGoogle Scholar
Arneodo, A., Baudet, C., Belin, F., Benzi, R., Castaing, B., Chabaud, B., Chavarria, R., Ciliberto, S., Camussi, R., Chilla, F., Dubrulle, B., Gagne, Y., Hebral, B., Herweijer, J., Marchand, M., Maurer, J., Muzy, J. F., Naert, A., Noullez, A., Peinke, J., Roux, F., Tabeling, P., van de Water, W. & Willaime, H. 1996 Structure functions in turbulence, in various flow configurations, at Reynolds number between 30 and 5000, using extended self-similarity. Europhys. Lett. 34, 411.Google Scholar
Arneodo, A., Benzi, R., Berg, J., Biferale, L., Bodenschatz, E., Busse, A., Calzavarini, E., Castaing, B., Cencini, M., Chevillard, L., Fisher, R. T., Grauer, R., Homann, H., Lamb, D., Lanotte, A. S., Léêque, E., Luthi, B., Mann, J., Mordant, N., Muller, W.-C., Ott, S., Ouellette, N. T., Pinton, J.-F., Pope, S. B., Roux, S. G., Toschi, F., Xu, H. & Yeung, P. K. 2008 Universal intermittent properties of particle trajectories in highly turbulent flows. Phys. Rev. Lett. 100, 254504.CrossRefGoogle ScholarPubMed
Arnett, D., Fryxell, B. & Mueller, E. 1989 Instabilities and nonradial motion in SN 1987A. Astrophys. J. Lett. 341, L63.CrossRefGoogle Scholar
Bec, J., Biferale, L., Cencini, M., Lanotte, A. & Toschi, F. 2006 Effects of vortex filaments on the velocity of tracers and heavy particle in turbulence. Phys. Fluids 18, 081702.Google Scholar
Belinicher, V. I., L'vov, V., Pomyalov, A. & Procaccia, I. 1998 Computing the scaling exponents in fluid turbulence from first principles: demonstration of multiscaling. J. Stat. Phys. 93, 797832.CrossRefGoogle Scholar
Benzi, R., Biferale, L., Calzavarini, E., Lohse, D. & Toschi, F. 2009 Velocity gradients statistics along particle trajectories in turbulent flows: the refined similarity hypothesis in the Lagrangian frame. Phys. Rev. E 80, 066318.Google ScholarPubMed
Benzi, R., Biferale, L., Ciliberto, S., Struglia, M. V., Tripiccione, R. 1996 Generalized scaling in fully developed turbulence. Physica D 96, 162.Google Scholar
Benzi, R., Biferale, L., Fisher, R., Kadanoff, L., Lamb, D. & Toschi, F. 2008 Intermittency and universality in fully developed inviscid and weakly compressible turbulent flows. Phys. Rev. Lett. 100, 234503.CrossRefGoogle ScholarPubMed
Benzi, R., Biferale, L., Paladin, G., Vulpiani, A. & Vergassola, M. 1991 Multifractality in the statistics of the velocity gradients in turbulence. Phys. Rev. Lett. 67, 2299.Google Scholar
Benzi, R., Ciliberto, S., Baudet, C., Massaioli, F. & Succi, S. 1993 Extended self-similarity in turbulent flows. Phys. Rev. E 48, R29.Google Scholar
Berg, J., Luthi, B., Mann, J. & Ott, S. 2006 Backwards and forwards relative dispersion in turbulent flow: an experimental investigation. Phys. Rev. E 74, 016304.Google Scholar
Berg, J., Ott, S., Mann, J. & Luthi, B. 2009 Lagrangian structure functions in a turbulent flow at intermediate Reynolds number. Phys. Rev. E 80, 026316.Google Scholar
Biferale, L. 2008 A note on the fluctuation of dissipative scale in turbulence. Phys. Fluids 20, 031703.CrossRefGoogle Scholar
Biferale, L., Bodenschatz, E., Cencini, M., Lanotte, A., Ouellette, N., Toschi, F. & Xu, H. 2008 Lagrangian structure functions in turbulence: a quantitative comparison between experiment and direct numerical simulation. Phys. Fluids 20, 065103.Google Scholar
Biferale, L., Boffetta, G., Celani, A., Devenish, B. J., Lanotte, A. & Toschi, F. 2004 Multifractal statistics of Lagrangian velocity and acceleration in turbulence. Phys. Rev. Lett. 93, 064502.CrossRefGoogle ScholarPubMed
Biferale, L., Boffetta, G., Celani, A., Lanotte, A. & Toschi, F. 2005 Particle trapping in three-dimensional fully developed turbulence. Phys. Fluids 17, 021701.CrossRefGoogle Scholar
Biferale, L., Cencini, M., Vergni, D. & Vulpiani, A. 1999 Exit time of turbulent signals: a way to detect the intermediate dissipative range. Phys. Rev. E 60, R6295.Google ScholarPubMed
Biferale, L. & Procaccia, I. 2005 Anisotropy in turbulent flows and in turbulent transport. Phys. Rep. 414, 43.CrossRefGoogle Scholar
Boffetta, G., De Lillo, F. & Musacchio, M. 2002 Lagrangian statistics and temporal intermittency in a shell model of turbulence. Phys. Rev. E 66, 066307.Google Scholar
Boffetta, G., Mazzino, A. & Vulpiani, A. 2008 Twenty-five years of multifractals in fully developed turbulence: a tribute to Giovanni Paladin. J. Phys. A 41, 363001.Google Scholar
Boratav, O. & Pelz, R. 1997 Structures and structure functions in the inertial range of turbulence. Phys. Fluids 9, 1400.Google Scholar
Borgas, M. S. 1993 The multifractal Lagrangian nature of turbulence. Phil. Trans. R. Soc. A 342, 379.Google Scholar
Bourgoin, M., Ouelette, N., Xu, H., Berg, J. & Bodenschatz, E. 2006 The role of pair dispersion in turbulent flow. Science 311, 835.CrossRefGoogle ScholarPubMed
Calder, A. C., Fryxell, B., Plewa, T., Rosner, R., Dursi, L. J., Weirs, V. G., Dupont, T., Robey, H. F., Kane, J. O., Remington, B. A., Drake, R. P., Dimonte, G., Zingale, M., Timmes, F. X., Olson, K., Ricker, P., Mac Neice, P. & Tufo, H. M. 2002 On validating an astrophysical simulation code. Astrophys. J. Suppl. 143, 201.Google Scholar
Chen, S., Sreenivasan, K. R. & Nelkin, M. 1997 Inertial range scalings of dissipation and enstrophy in isotropic turbulence. Phys. Rev. Lett. 79, 2253.CrossRefGoogle Scholar
Chevillard, L., Roux, S., Lévěque, E., Mordant, N., Pinton, J.-F. & Arneodo, A. 2003 Lagrangian velocity statistics in turbulent flows: effects of dissipation. Phys. Rev. Lett. 91, 214502.CrossRefGoogle ScholarPubMed
Colella, P. & Woodward, P. R. 1984 The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys. 54, 174.CrossRefGoogle Scholar
Dhruva, B., Tsuji, Y. & Sreenivasan, K. R. 1997 Transverse structure functions in high-Reynolds-number turbulence. Phys. Rev. E 56, R4928.Google Scholar
Dubrulle, B. 1994 Intermittency in fully developed turbulence: log-Poisson statistics and generalized scale covariance. Phys. Rev. Lett. 73, 959.CrossRefGoogle ScholarPubMed
Eswaran, V. & Pope, S. B. 1988 An examination of forcing in direct numerical simulations of turbulence. Comput. Fluids 16, 257.Google Scholar
Fisher, R. T., Kadanoff, L. P., Lamb, D. Q., Dubey, A., Plewa, T., Calder, A., Cattaneo, F., Constantin, P., Foster, I., Papka, M. E., Abarzhi, S. I., Asida, S. M., Rich, P. M., Glendening, C. C., Antypas, K., Sheeler, D. J., Reid, L. B., Gallagher, B. & Needham, S. G. 2007 Terascale turbulence computation on BG/L using the FLASH3 code. IBM J. Res. Dev. 52, 127.Google Scholar
Frisch, U. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.Google Scholar
Frisch, U. & Vergassola, M. 1991 A prediction of the multifractal model: the intermediate dissipation range. Europhys. Lett. 14, 439.CrossRefGoogle Scholar
Gotoh, T., Fukayama, D. & Nakano, T. 2002 Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation. Phys. Fluids 14, 1065.Google Scholar
He, G., Chen, S., Kraichnan, R. H., Zhang, R. & Zhou, Y. 1998 Statistics of dissipation and enstrophy induced by localized vortices. Phys Rev. Lett. 81, 4636.Google Scholar
Hill, R. 2001 Equations relating structure functions of all orders. J. Fluid Mech. 434, 379.CrossRefGoogle Scholar
Homann, H., Grauer, R., Busse, A. & Mueller, W. 2007 Lagrangian statistics of Navier–Stokes and MHD turbulence. J. Plasma Phys. 73, 821.CrossRefGoogle Scholar
Homann, H., Kamps, O., Friedrich, R. & Grauer, R. 2009 Bridging from Eulerian to Lagrangian statistics in 3D hydro- and magnetohydrodynamic turbulent flows. New J. Phys. 11, 073020.CrossRefGoogle Scholar
Ishihara, T., Gotoh, T. & Kaneda, Y. 2009 Study of high-Reynolds Number isotropic turbulence by direct numerical simulation. Annu. Rev. Fluid Mech. 41, 165.Google Scholar
Jensen, M. H. 1999 Multiscaling and structure functions in turbulence: an alternative approach. Phys. Rev. Lett. 83, 76.CrossRefGoogle Scholar
Jimenez, J., Wray, A. A., Saffman, P. G. & Rogallo, R. S. 1993 The structure of intense vorticity in isotropic turbulence. J. Fluid Mech. 255, 65.Google Scholar
Kane, J. O., Robey, H. F., Remington, B. A., Drake, R. P., Knauer, J., Ryutov, D. D., Louis, H., Teyssier, R., Hurricane, O., Arnett, D., Rosner, R. & Calder, A. 2001 Interface imprinting by a rippled shock using an intense laser. Phys. Rev. E 63, 055401.Google ScholarPubMed
La Porta, A., Voth, G. A., Crawford, A. M., Alexander, J. & Bodenschatz, E. 2001 Fluid particle accelerations in fully developed turbulence. Nature 409, 1017.Google Scholar
Lohse, D. 1994 Crossover from high to low-Reynolds-number turbulence. Phys. Rev. Lett. 73, 3223.Google Scholar
Luethi, B., Tsinober, A. & Kinzelbach, W. 2005 Lagrangian measurement of vorticity dynamics in turbulent flow. J. Fluid Mech. 528, 87.CrossRefGoogle Scholar
L'vov, V. S. & Procaccia, I. 1996 Viscous lengths in hydrodynamic turbulence are anomalous scaling functions. Phys. Rev. Lett. 77, 3541.Google Scholar
Mazzitelli, I. & Lohse, D. 2004 Lagrangian statistics for fluid particles and bubbles in turbulence. New J. Phys. 6, 203.Google Scholar
Meneveau, C. 1996 Transition between viscous and inertial-range scaling of turbulence structure functions. Phys. Rev. E 54, 3657.Google Scholar
Meneveau, C. & Chabra, A. 1990 Two-poi statistics of multifractal measures. Physica A 164, 564.Google Scholar
Mordant, N., Lévêque, E. & Pinton, J.-F. 2006 Experimental and numerical study of Lagrangian dynamics of high Reynolds turbulence. New J. Phys. 6, 116.CrossRefGoogle Scholar
Mordant, N., Metz, P., Michel, O. & Pinton, J.-F., 2001 Measurement of Lagrangian velocity in fully developed turbulence. Phys. Rev. Lett. 87, 214501.Google Scholar
Nelkin, M. 1990 Multifractal scaling of velocity derivatives in turbulence. Phys. Rev. A 42, 7226.CrossRefGoogle ScholarPubMed
Ott, S. & Mann, J. 2000 An experimental investigation of the relative diffusion of particle pairs in three- dimensional turbulent flow. J. Fluid Mech. 422, 207.CrossRefGoogle Scholar
Paladin, G. & Vulpiani, A. 1987 Degrees of freedom of turbulence. Phys. Rev. A 35, R1971.Google Scholar
Parisi, G. & Frisch, U. 1985 In Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics. Proceedings of the Enrico Fermi School of Physics (ed. Ghil, M., Benzi, R. & Parisi, G.), pp. 8487. North Holland.Google Scholar
Plewa, T., Calder, A. C. & Lamb, D. Q. 2004 Type Ia supernova explosion: gravitationally confined detonation. Astrophys. J. 612, L37.CrossRefGoogle Scholar
Porter, D., Pouquet, A. & Woodward, P. 2002 Measures of intermittency in driven supersonic flows. Phys. Rev. E 66, 026301.Google Scholar
Rosner, R., Calder, A., Dursi, J., Fryxell, B., Lamb, D. Q., Niemeyer, J. C., Olson, K., Ricker, P., Timmes, F. X., Truran, J. W., Tufo, H., Young, Y. N., Zingale, M., Lusk, E. & Stevens, R. 2000 Flash code: Studying astrophysical thermonuclear flashes. Comput. Sci. Engng 2, 33.Google Scholar
Sawford, B. L. 2001 Turbulent relative dispersion. Annu. Rev. Fluid Mech. 33, 289.Google Scholar
Schumacher, J. 2007 Sub-Kolmogorov-scale fluctuations in fluid turbulence. Europhys. Lett. 80, 54001.CrossRefGoogle Scholar
Schumacher, J., Sreenivasan, K. R. & Yakhot, V. 2007 Asymptotic exponents from low-Reynolds-number flows. New J. Phys. 9, 89.Google Scholar
She, Z.-S. & Lévêque, E. 1994 Universal scaling laws in fully developed turbulence. Phys. Rev. Lett. 72, 336.Google Scholar
Shen, X. & Warhaft, Z. 2002 Longitudinal and transverse structure functions in sheared and unsheared wind-tunnel turbulence. Phys. Fluids 14, 370.Google Scholar
Sirovich, L., Smith, L. & Yakhot, V. 1994 Energy spectrum of homogeneous and isotropic turbulence in far dissipation range. Phys. Rev. Lett. 72, 344.CrossRefGoogle ScholarPubMed
Toschi, F. & Bodenschatz, E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375.Google Scholar
Xu, H., Bourgoin, M., Ouellette, N. T. & Bodenschatz, E. 2006 High-order Lagrangian velocity statistics in turbulence. Phys. Rev. Lett. 96, 024503.CrossRefGoogle ScholarPubMed
Yakhot, V. & Sreenivasan, K. R. 2004 Towards a dynamical theory of multifractals in turbulence. Physica A 343, 147.Google Scholar
Yakhot, V. & Sreenivasan, K. R. 2005 Anomalous scaling of structure functions and dynamic constraints on turbulence simulations. J. Stat. Phys. 121, 823.Google Scholar
Yamazaki, Y., Ishihara, T. & Kaneda, Y. 2002 Effects of wavenumber truncation on high-resolution direct numerical simulation of turbulence. J. Phys. Soc. Japan 71, 777.CrossRefGoogle Scholar
Yeung, P. K. & Pope, S. B. 1989 Lagrangian statistics from direct numerical simulations of isotropic turbulence. J. Fluid Mech. 207, 531.Google Scholar
Yeung, P. K., Pope, S. B. & Sawford, B. L. 2006 Reynolds number dependence of Lagrangian statistics in large numerical simulations of isotropic turbulence. J. Turbul. 7, N58.Google Scholar
Watanabe, T. & Gotoh, T. 2007 Inertial-range intermittency and accuracy of direct numerical simulation for turbulence and passive scalar turbulence. J. Fluid Mech. 590, 117.CrossRefGoogle Scholar
van de Water, W. & Herweijer, J. A. 1999 High-order structure functions of turbulence. J. Fluid Mech. 387, 3.CrossRefGoogle Scholar
Weirs, G., Dwarkadas, V., Plewa, T., Tomkins, C. & Marr-Lyon, M. 2005 Validating the flash code: vortex-dominated flows. Astrophys. Space Sci. 298, 341.CrossRefGoogle Scholar
Zhang, J., Messer, O. E. B., Khokhlov, A. M. & Plewa, T. 2007 On the evolution of thermonuclear flames on large scales. Astrophys. J. 656, 347.Google Scholar
Zhou, T. & Antonia, R. A. 2000 Reynolds number dependence of the small-scale structure of grid turbulence. J. Fluid Mech. 406, 81.CrossRefGoogle Scholar
Zybin, K., Sirota, V. A., Ilyin, A. S. & Gurevich, A. V. 2008 Lagrangian statistical theory of fully developed hydrodynamical turbulence. Phys. Rev. Lett. 100, 174504.Google Scholar