Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T15:07:09.503Z Has data issue: false hasContentIssue false

Inertial coating of a fibre

Published online by Cambridge University Press:  26 April 2006

Alain De Ryck
Affiliation:
Laboratoire de Physique de la Matière Condensée, Collège de France, 75231 Paris Cedex 05, France
David Quéré
Affiliation:
Laboratoire de Physique de la Matière Condensée, Collège de France, 75231 Paris Cedex 05, France

Abstract

Fibres can be coated by passing them through a solution. At low velocity, the thickness of the entrained film is given by the Landau law. For liquids of low viscosity, we discuss the high-speed withdrawal regimes which are of technological interest. We focus on inertial effects and geometrical limitations. New experimental data are presented and discussed by using dimensional arguments. Finally, a classification is proposed.

Type
Research Article
Copyright
© 1996 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bretherton, F. P. 1961 The motion of long bubbles in tubes. J. Fluid Mech. 10, 166188.Google Scholar
Carroll, B. J. & Lucassen, J. 1973 Capillarity-controlled entrainment of liquid by a thin cylindrical filament. Chem. Engng Sci. 28, 2330.Google Scholar
Chen, J. D. 1986 Measuring the film thickness surrounding a bubble inside a capillary. J. Colloid Interface Sci. 109, 341349.Google Scholar
Derjaguin, B. V. 1943 On the thickness of the liquid film adhering to the walls of a vessel after emptying. Acta Physicochim. USSR 20, 349352.Google Scholar
Epikhin, V. E. & Shkadov, V. 1978 Flows and capillary instabilities of jets interacting with the surrounding medium. Izv. Acad. Sci. USSR Mech. Zhid Gaza 6, 5059.Google Scholar
Esmail, M. N. & Hummel, R. L. 1975 Nonlinear theory of free coating onto a vertical surface. AIChE J. 21, 958965.Google Scholar
Goucher, F. S. & Ward, H. 1922 The thickness of liquid films formed on solid surfaces under dynamic condition. Phil. Mag. 44, 10021014.Google Scholar
Koulago, A., Quéré, D., Ryck, A. de & Shkadov, V. 1995 Film entrained by a fiber quickly drawn out of a liquid bath. Phys. Fluids 7, 12211224.Google Scholar
Landau, L. D. & Levich, B. 1942 Dragging of a liquid by a moving plate. Acta Physicochim. USSR 17, 4254.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics. Pergamon.
Lyklema, J., Scholten, P. C. & Mysels, K. J. 1960 Flow in thin liquid films. J. Phys. Chem. 69, 116123.Google Scholar
Morey, F. C. 1940 Thickness of a film adhering to a surface slowly withdrawn from the liquid. J. Res. Natl Bur. Stand. Stand. 25, 385393.Google Scholar
Mysels, K. J. & Cox, M. C. 1962 An experimental test of Frankel's law of film thickness. J. Colloid Sci. 17, 136145.Google Scholar
Mysels, K. J., Shinoda, K. & Frankel, S. 1959 Soap Films. Pergamon.
Quéré, D. & Archer, E. 1993 The trail of the drops. Europhys. Lett. 24, 761766.Google Scholar
Quéré, D., Meglio, J. M. di & Brochard-Wyart, F. 1989 Making van der waals films on fibers. Europhys. Lett. 10, 335340.Google Scholar
Ratulowski, J. & Chang, H. C. 1990 Marangoni effects of trace impurities on the motion of long gas bubbles in capillaries. J. Fluid Mech. 210, 303328.Google Scholar
Ryck, A. de & Quéré, D. 1993a Fibres tirées d'un bain. C. R. Acad. Sci. Paris (II) 316, 10451050.Google Scholar
Ryck, A. de & Quéré, D. 1993b Entrainement visco-inertiel de liquide par un fil. C. R. Acad. Sci. Paris (II) 317, 891897.Google Scholar
Ryck, A. de & Quéré, D. 1994 Quick forced spreading. Europhys. Lett. 25, 197192.Google Scholar
Ryke, A. de & Quéré, D. 1995 Gravity and inertia effects in plate coating. J. Colloid Interface Sci. (submitted).Google Scholar
Sedev, R. V. & Petrov, J. F. 1992 Influence of geometry on steady dewetting kinetics. Colloids Surfaces 62, 141151.Google Scholar
Soroka, A. J. & Tallamadge, J. A. 1971 A test of the inertial theory for plate withdrawal. AIChE J. 17, 505508.Google Scholar
White, D. A. & Tallamadge, J. A. 1965 Theory of drag out of liquids on flat plates. Chem. Engng Sci. 20, 3337.Google Scholar
White, D. A. & Tallmadge, J. A. 1966 A theory of withdrawal of cylinders from liquid baths. AIChE J. 12, 333339.Google Scholar