Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-19T04:10:06.324Z Has data issue: false hasContentIssue false

Incompressible flow in a labyrinth seal

Published online by Cambridge University Press:  19 April 2006

H. Stoff
Affiliation:
Chaire de la Mécanique de la Turbulence and Institut de Thermique Appliquée, Ecole Polytechnique Fédérale de Lausanne

Abstract

The incompressible flow in a labyrinth seal is computed using the ‘κ−ε’ turbulence model with a pressure-velocity computer code in order to explain leakage phenomena against the mean pressure gradient. The flow is axisymmetric between a rotating shaft and an enclosing cylinder at rest. The main stream in circumferential direction induces a secondary mean flow vortex pattern inside annular cavities on the surface of the shaft. The domain of interest is one such cavity of an enlarged model of a labyrinth seal, where the finite difference result of a computer program is compared with measurements obtained by a back-scattering laser-Doppler anemometer at a cavity Reynolds number of ∼ 3 × 104 and a Taylor number of ∼ 1·2 × 104. The turbulent kinetic energy and the turbulence dissipation rate are verified experimentally for a comparison with the result of the turbulence model.

Type
Research Article
Copyright
© 1980 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alziary de Roquefort, T. & Grillaud, G. 1978 Computation of Taylor vortex flow by a transient implicit method. Comp. & Fluids 6, 259.Google Scholar
Benjamin, T. B. 1978 Bifurcation phenomena in steady flows of a viscous fluid. Proc. Roy. Soc. A 359, 27.Google Scholar
Boyman, T. 1979 Phénomènes de transport dans les garnitures à labyrinthes des turbomachines. Communication no. 7 de l'Institut de Thermique Appliquée, EPF Lausanne. (Thesis report.)
Boyman, T. & Suter, P. 1978 Transport phenomena in labyrinth seals of turbomachines. AGARD Conf. Proc. Seal technology in gas turbine engines, London.
Bradshaw, P. 1969 The analogy between streamline curvature and buoyancy in turbulent shear flow. J. Fluid Mech. 36, 177.Google Scholar
Cole, J. A. 1976 Taylor-vortex instability and annulus-length effects. J. Fluid Mech. 75, 1.Google Scholar
Donnelly, R. J. & Schwarz, K. W. 1965 Experiments on the stability of viscous flow between rotating cylinders. Proc. Roy. Soc. A 283, 531.Google Scholar
George, K. W. & Lumley, J. L. 1973 The laser-Doppler velocimeter and its application to the measurement of turbulence. J. Fluid Mech. 60, 321.Google Scholar
Gollub, J. P. & Swinney, H. L. 1975 Onset of turbulence in a rotating fluid. Phys. Rev. Lett. 35, 927.Google Scholar
Gosman, A. D., Koosnlin, M. L., Lockwood, F. C. & Spalding, D. B. 1976 Transfer of heat in rotating systems. A.S.M.E. public. 76-GT-25.Google Scholar
Gosman, A. D. & Pun, W. 1974 Lecture notes for course entitled ‘Calculation of recirculating flows’. Imperial College London, Mech. Eng. Dept. Rep. HTS/74/2.Google Scholar
Haken, H. 1977 Synergetics. Springer.
Hinze, J. O. 1975 Turbulence, 2nd edn. McGraw-Hill.
Hutchinson, P., Khalil, E. E., Whitelaw, J. H. & Wigley, G. 1976 The calculation of furnace-flow properties and their experimental verification. Trans. A.S.M.E. C, J. Heat Transfer 98, 276.Google Scholar
Johnston, J. P. 1976 Internal flows. Turbulence: Topics in Applied Physics, vol. 12. (ed. P. Bradshaw), p. 109. Springer.
Koosinlin, M. L. & Lockwood, F. C. 1974 The prediction of axisymmetric turbulent swirling boundary layers. A.I.A.A. J. 12, 547.Google Scholar
Launder, B. E., Reece, G. J. & Rodi, W. 1975 Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech. 68, 537.Google Scholar
Lawn, C. J. 1971 The determination of the rate of dissipation in turbulent pipe flow. J. Fluid. Mech. 48, 477.Google Scholar
Lilley, D. G. 1973 Prediction of inert turbulent swirl flows. A.I.A.A. J. 11, 955.Google Scholar
Lilley, D. G. 1976 Computing strongly swirling flows with a primitive pressure-velocity code. A.I.A.A. J. 14, 749.Google Scholar
Rotta, J. C. 1972 Turbulente Strömungen, Stuttgart: Teubner.
Sharma, B. I. 1977 Computation of flow past a rotating cylinder with an energy-dissipation model of turbulence. A.I.A.A. J. 15, 271.Google Scholar
So, R. M. C. 1978 Turbulent boundary layers with large streamline curvature effects. Z. angew. Math. Phys. 29, 54.Google Scholar
Stoff, H. 1979 Calcul et mesure de la turbulence d'un écoulement incompressible dans le labyrinthe entre un arbre en rotation et un cylindre stationnaire. Report submitted for a doctoral thesis at Ecole Polytechnique Fédérale de Lausanne, no. 342.
Taylor, G. I. 1935 Distribution of velocity and temperature between concentric rotating cylinders. Proc. Roy. Soc. A 151, 494 and The Scientific Papers of Sir G. I. Taylor, vol. 2 (ed. G. K. Batchelor), Cambridge University Press (1960).Google Scholar
Tennekes, H. & Lumley, J. L. 1973 A First Course in Turbulence. Massachusetts Institute of Technology Press.
Wilcox, D. C. & Chambers, T. L. 1977 Streamline curvature effects on turbulent boundary layers. A.I.A.A. J. 15, 574.Google Scholar