Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T03:27:36.197Z Has data issue: false hasContentIssue false

The importance of bubble deformability for strong drag reduction in bubbly turbulent Taylor–Couette flow

Published online by Cambridge University Press:  28 March 2013

Dennis P. M. van Gils
Affiliation:
Physics of Fluids Group, Faculty of Science and Technology, J.M. Burgers Center for Fluid Dynamics, and IMPACT Institute, University of Twente, The Netherlands
Daniela Narezo Guzman
Affiliation:
Physics of Fluids Group, Faculty of Science and Technology, J.M. Burgers Center for Fluid Dynamics, and IMPACT Institute, University of Twente, The Netherlands
Chao Sun*
Affiliation:
Physics of Fluids Group, Faculty of Science and Technology, J.M. Burgers Center for Fluid Dynamics, and IMPACT Institute, University of Twente, The Netherlands
Detlef Lohse*
Affiliation:
Physics of Fluids Group, Faculty of Science and Technology, J.M. Burgers Center for Fluid Dynamics, and IMPACT Institute, University of Twente, The Netherlands
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

Bubbly turbulent Taylor–Couette (TC) flow is globally and locally studied at Reynolds numbers of $\mathit{Re}= 5\times 1{0}^{5} $ to $2\times 1{0}^{6} $ with a stationary outer cylinder and a mean bubble diameter around 1 mm. We measure the drag reduction (DR) based on the global dimensional torque as a function of the global gas volume fraction ${\alpha }_{global} $ over the range 0–4 %. We observe a moderate DR of up to 7 % for $\mathit{Re}= 5. 1\times 1{0}^{5} $. Significantly stronger DR is achieved for $\mathit{Re}= 1. 0\times 1{0}^{6} $ and $2. 0\times 1{0}^{6} $ with, remarkably, more than $40\hspace{0.167em} \% $ of DR at $\mathit{Re}= 2. 0\times 1{0}^{6} $ and ${\alpha }_{global} = 4\hspace{0.167em} \% $. To shed light on the two apparently different regimes of moderate DR and strong DR, we investigate the local liquid flow velocity and the local bubble statistics, in particular the radial gas concentration profiles and the bubble size distribution, for the two different cases: $\mathit{Re}= 5. 1\times 1{0}^{5} $ in the moderate DR regime and $\mathit{Re}= 1. 0\times 1{0}^{6} $ in the strong DR regime, both at ${\alpha }_{global} = 3\pm 0. 5\hspace{0.167em} \% $. In both cases the bubbles mostly accumulate close to the inner cylinder (IC). Surprisingly, the maximum local gas concentration near the IC for $\mathit{Re}= 1. 0\times 1{0}^{6} $ is ${\approx }2. 3$ times lower than that for $\mathit{Re}= 5. 1\times 1{0}^{5} $, in spite of the stronger DR. Evidently, a higher local gas concentration near the inner wall does not guarantee a larger DR. By defining and measuring a local bubble Weber number ($\mathit{We}$) in the TC gap close to the IC wall, we observe that the cross-over from the moderate to the strong DR regime occurs roughly at the cross-over of $\mathit{We}\sim 1$. In the strong DR regime at $\mathit{Re}= 1. 0\times 1{0}^{6} $ we find $\mathit{We}\gt 1$, reaching a value of $9(+ 7, - 2)$ when approaching the inner wall, indicating that the bubbles increasingly deform as they draw near the inner wall. In the moderate DR regime at $\mathit{Re}= 5. 1\times 1{0}^{5} $ we find $\mathit{We}\approx 1$, indicating more rigid bubbles, even though the mean bubble diameter is larger, namely $1. 2(+ 0. 7, - 0. 1)~\mathrm{mm} $, as compared with the $\mathit{Re}= 1. 0\times 1{0}^{6} $ case, where it is $0. 9(+ 0. 6, - 0. 1)~\mathrm{mm} $. We conclude that bubble deformability is a relevant mechanism behind the observed strong DR. These local results match and extend the conclusions from the global flow experiments as found by van den Berg et al. (Phys. Rev. Lett., vol. 94, 2005, p. 044501) and from the numerical simulations by Lu, Fernandez & Tryggvason (Phys. Fluids, vol. 17, 2005, p. 95102).

Type
Papers
Copyright
©2013 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany.

References

Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large-scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.CrossRefGoogle Scholar
Benzi, R., Ching, E. S. C., Horesh, N. & Procaccia, I. 2004 Theory of concentration dependence in drag reduction by polymers and of the maximum drag reduction asymptote. Phys. Rev. Lett. 92, 78302.CrossRefGoogle ScholarPubMed
Berman, N. S. 1978 Drag reduction by polymers. Annu. Rev. Fluid Dyn. 10, 4764.CrossRefGoogle Scholar
Bonn, D., Amarouchène, Y., Wagner, C., Douady, S. & Cadot, O. 2005 Turbulent drag reduction by polymers. J. Phys: Condens. Matter 17, S1195S1202.Google Scholar
Burin, M. J., Schartman, E. & Ji, H. 2010 Local measurements of turbulent angular momentum transport in circular Couette flow. Exp. Fluids 48, 763769.CrossRefGoogle Scholar
Calzavarini, E., Kerscher, M., Lohse, D. & Toschi, F. 2008 Dimensionality and morphology of particle and bubble clusters in turbulent flow. J. Fluid Mech. 607, 1324.CrossRefGoogle Scholar
Cartellier, A. 1990 Optical probes for local void fraction measurements: characterization of performance. Rev. Sci. Instrum. 61, 874886.CrossRefGoogle Scholar
Cartellier, A. & Achard, J. L. 1991 Local phase detection probes in fluid/fluid two-phase flows. Rev. Sci. Instrum. 62, 279303.Google Scholar
Cartellier, A. 1992 Simultaneous void fraction measurement, bubble velocity, and size estimate using a single optical probe in gas–liquid two-phase flows. Rev. Sci. Instrum. 63, 54425453.CrossRefGoogle Scholar
Ceccio, S. L. 2010 Friction drag reduction of external flows with bubble and gas injection. Annu. Rev. Fluid Mech. 42, 183203.CrossRefGoogle Scholar
Clark, H. III & Deutsch, S. 1991 Microbubble skin friction on an axisymmetric body under the influence of applied axial pressure gradients. Phys. Fluids A3, 29482954.CrossRefGoogle Scholar
Deutsch, S., Fontaine, A. A., Moeny, M. J. & Petrie, H. 2006 Combined polymer and microbubble drag reduction on a large flat plate. J. Fluid Mech. 556, 309327.Google Scholar
Djeridi, H., Gabillet, C. & Billard, J. Y. 2004 Two-phase Couette–Taylor flow: arrangement of the dispersed phase and effects on the flow structures. Phys. Fluids 16, 128139.Google Scholar
Drappier, J., Divoux, T., Amarouchene, Y., Bertrand, F., Rodts, S., Cadot, O., Meunier, J. & Bonn, D. 2006 Turbulent drag reduction by surfactants. Europhys. Lett. 74, 362368.CrossRefGoogle Scholar
Eckhardt, B., Grossmann, S. & Lohse, D. 2007 Torque scaling in turbulent Taylor–Couette flow between independently rotating cylinders. J. Fluid Mech. 581, 221250.CrossRefGoogle Scholar
Einstein, A. 1906 A new determination of molecular dimensions. Ann. Phys. (Leipz.) 19, 289306.Google Scholar
Elbing, B. R., Winkel, E. S., Lay, K. A., Ceccio, S. L., Dowling, D. R. & Perlin, M. 2008 Bubble-induced skin-friction drag reduction and the abrupt transition to air-layer drag reduction. J. Fluid Mech. 612, 136.CrossRefGoogle Scholar
Ferrante, A. & Elghobashi, S. 2004 On the physical mechanisms of drag reduction in a spatially-developing turbulent boundary layer laden with microbubbles. J. Fluid Mech. 503, 345355.CrossRefGoogle Scholar
Guet, S., Fortunati, R. V., Mudde, R. F. & Ooms, G. 2003 Bubble velocity and size measurement with a four-point optical fibre probe. Part. Part. Syst. Charact. 20, 219230.CrossRefGoogle Scholar
Gutierrez-Torres, C. C., Hassan, Y. A. & Jimenez-Bernal, J. A. 2008 Turbulence structure modification and drag reduction by microbubble injections in a boundary layer channel flow. J. Fluids Engng 130, 111304.Google Scholar
Huisman, S. G., van Gils, D. P. M., Grossmann, S., Sun, C. & Lohse, D. 2012a Ultimate turbulent Taylor–Couette flow. Phys. Rev. Lett. 108, 024501.Google Scholar
Huisman, S. G., van Gils, D. P. M. & Sun, C. 2012b Applying laser Doppler anemometry inside a Taylor–Couette geometry using a ray-tracer to correct for curvature effects. Eur. J. Mech. (B/Fluids) 36, 115119.Google Scholar
Jacob, B., Olivieri, A., Miozzi, M., Campana, E. F. & Piva, R. 2010 Drag reduction by microbubbles in a turbulent boundary layer. Phys. Fluids 22, 115104.CrossRefGoogle Scholar
Julia, J. E., Harteveld, W. K., Mudde, R. F. & den Akker, H. E. A. V. 2005 On the accuracy of the void fraction measurements using optical probes in bubbly flows. Rev. Sci. Instrum. 76, 35103.CrossRefGoogle Scholar
Kanai, A. & Miyata, H. 2001 Direct numerical simulation of wall turbulent flows with microbubbles. Intl J. Numer. Meth. Fluids 35, 593615.Google Scholar
Kato, H., Miura, K., Yamaguchi, H. & Miyanaga, M. 1998 Experimental study on microbubble ejection method for frictional drag reduction. J. Mar. Sci. Technol. 3, 122129.CrossRefGoogle Scholar
Kodama, Y., Kakugawa, A., Takahashi, T. & Kawashima, H. 2000 Experimental studies on microbubbles and their applicability to ships for skin friction reduction. Intl J. Heat Fluid Flow 21, 582588.CrossRefGoogle Scholar
Lathrop, D. P., Fineberg, J. & Swinney, H. L. 1992 Transition to shear-driven turbulence in Couette–Taylor flow. Phys. Rev. A 46, 63906405.Google Scholar
Latorre, R. 1997 Ship hull drag reduction using bottom air injection. Ocean Engng 24, 161175.Google Scholar
Latorre, R., Miller, A. & Philips, R. 2003 Micro-bubble resistance reduction on a model SES catamaran. Ocean Engng 30, 22972309.CrossRefGoogle Scholar
Lo, T. S., L’vov, V. S. & Procaccia, I. 2006 Drag reduction by compressible bubbles. Phys. Rev. E 73, 36308.CrossRefGoogle ScholarPubMed
Lu, J., Fernandez, A. & Tryggvason, G. 2005 The effect of bubbles on the wall drag in a turbulent channel flow. Phys. Fluids 17, 95102.Google Scholar
Luther, S., Rensen, J. M. & Guet, S. 2004 Bubble aspect ratio and velocity measurement using a four-point fibre-optical probe. Exp. Fluids 36, 326333.Google Scholar
Madavan, N. K., Deutsch, S. & Merkle, C. L. 1984 Reduction of turbulent skin friction by microbubbles. Phys. Fluids 27 (2), 356363.CrossRefGoogle Scholar
Madavan, N. K., Deutsch, S. & Merkle, C. L. 1985 Measurements of local skin frictions in a microbubble-modified turbulent boundary layer. J. Fluid Mech. 156, 237256.Google Scholar
Magnaudet, J. & Eames, I. 2000 The motion of high-Reynolds number bubbles in inhomogeneous flows. Annu. Rev. Fluid Mech. 32, 659708.CrossRefGoogle Scholar
Martinez Mercado, J., Chehata Gomez, D., van Gils, D. P. M., Sun, C. & Lohse, D. 2010 On bubble clustering and energy spectra in pseudo-turbulence. J. Fluid Mech. 650, 287306.CrossRefGoogle Scholar
Mehel, A., Gabillet, C. & Djeridi, H. 2007 Analysis of the flow patterns modifications in a bubbly Couette–Taylor flow. Phys. Fluids 19, 118101.Google Scholar
Meng, J. C. S. & Uhlman, J. S. 1998 Microbubble formation and splitting in a turbulent boundary layer for turbulence reduction. In Proceedings of the International Symposium on Seawater Drag Reduction (ed. US Office of Naval Research Arlington), pp. 341–355. Newport, Rhode Island.Google Scholar
Merkle, C. & Deutsch, S. 1989 Microbubble drag reduction. In Frontiers in Experimental Fluid Mechanics (ed. Gad-el-Hak, M.), Lecture Notes in Engineering, vol. 46, p. 291. Springer.Google Scholar
Merkle, C. L. & Deutsch, S. 1992 Microbubble drag reduction in liquid turbulent boundary layers. Appl. Mech. Rev. 45, 103127.CrossRefGoogle Scholar
Moriguchi, Y. & Kato, H. 2002 Influence of microbubble diameter and distribution on frictional resistance reduction. J. Mar. Sci. Technol. 7, 7985.Google Scholar
Mudde, R. F. & Saito, T. 2001 Hydrodynamical similarities between bubble column and bubbly pipe flow. J. Fluid Mech. 437, 203228.Google Scholar
Murai, Y., Oiwa, H. & Takeda, Y. 2005 Bubble behaviour in a vertical Taylor–Couette flow. J. Phys.: Conf. Ser. 14, 143156.Google Scholar
Murai, Y., Oiwa, H. & Takeda, Y. 2008 Frictional drag reduction in bubbly Couette–Taylor flow. Phys. Fluids 20, 034101.Google Scholar
Procaccia, I., Lvov, V. S. & Benzi, R. 2008 Colloquium: theory of drag reduction by polymers in wall-bounded turbulence. Rev. Mod. Phys. 80, 225247.CrossRefGoogle Scholar
Rensen, J., Luther, S. & Lohse, D. 2005 Effect of bubbles on developed turbulence. J. Fluid Mech. 538, 153187.Google Scholar
Risso, F. & Fabre, J. 1998 Oscillations and breakup of a bubble immersed in a turbulent field. J. Fluid Mech. 372, 323355.CrossRefGoogle Scholar
Saeki, T., De Guzman, M. R., Morishima, H., Usui, H. & Nishimura, T. 2000 A flow visualization study of the mechanism of turbulent drag reduction by surfactants. Nihon Reoroji Gakkaishi 20, 3540.Google Scholar
Sanders, W. C., Winkel, E. S., Dowling, D. R., Perlin, M. & Ceccio, S. L. 2006 Bubble friction drag reduction in a high-Reynolds-number flat-plate turbulent boundary layer. J. Fluid Mech. 552, 353380.Google Scholar
Shen, X., Ceccio, S. & Perlin, M. 2006 Influence of bubble size on micro-bubble drag reduction. Exp. Fluids 41, 415424.CrossRefGoogle Scholar
Sugiyama, K., Calzavarini, E. & Lohse, D. 2008 Microbubble drag reduction in Taylor–Couette flow in the wavy vortex regime. J. Fluid Mech. 608, 2141.CrossRefGoogle Scholar
Takagi, S. & Matsumoto, Y. 2011 Surfactant effects on bubble motion and bubbly flows. Annu. Rev. Fluid Mech. 43, 615636.CrossRefGoogle Scholar
Takahashi, T., Kakugawa, A., Makino, M., Yanagihara, T. & Kodama, Y. 2000 A brief report on microbubble experiments using 50-m long flat plate ship. In 74th General Meeting of SRI.Google Scholar
van den Berg, T. H., van Gils, D. P. M., Lathrop, D. P. & Lohse, D. 2007 Bubbly turbulent drag reduction is a boundary layer effect. Phys. Rev. Lett. 98, 084501.CrossRefGoogle ScholarPubMed
van den Berg, T. H., Luther, S., Lathrop, D. P. & Lohse, D. 2005 Drag reduction in bubbly Taylor–Couette turbulence. Phys. Rev. Lett. 94, 044501.CrossRefGoogle ScholarPubMed
van den Berg, T. H., Wormgoor, W. D., Luther, S. & Lohse, D. 2011 Phase sensitive constant temperature anemometry. Macromol. Mater. Engng 296, 230237.Google Scholar
van Gils, D. P. M., Bruggert, G.-W., Lathrop, D. P., Sun, C. & Lohse, D. 2011a The Twente turbulent Taylor–Couette (T3C) facility: strongly turbulent (multi-phase) flow between independently rotating cylinders. Rev. Sci. Instrum. 82, 25105.Google Scholar
van Gils, D. P. M., Huisman, S. G., Bruggert, G.-W., Sun, C. & Lohse, D. 2011b Torque scaling in turbulent Taylor–Couette flow with co- and counterrotating cylinders. Phys. Rev. Lett. 106, 024502.Google Scholar
van Gils, D. P. M., Huisman, S. G., Grossmann, S., Sun, C. & Lohse, D. 2012 Optimal Taylor–Couette turbulence. J. Fluid Mech. 706, 118149.Google Scholar
Virk, P. S. 1975 Drag reduction fundamentals. AIChE J. 21, 625656.Google Scholar
White, C. M. & Mungal, M. G. 2008 Mechanics and prediction of turbulent drag reduction with polymer additives. Annu. Rev. Fluid Mech. 40, 235256.CrossRefGoogle Scholar
Wu, C., Suddard, K. & Al-dahhan, M. H. 2008 Bubble dynamics investigation in a slurry bubble column. AIChE J. 54, 12031212.Google Scholar
Xue, j., Al-Dahhan, M., Dudokovic, M. P. & Mudde, R. F. 2003 Bubble dynamics measurements using four-point optical probe. Can. J. Chem. Engng 81, 375381.Google Scholar
Xue, J., Al-Dahhan, M., Dudukovic, M. P. & Mudde, R. F. 2008 Four-point optical probe for measurement of bubble dynamics: validation of the technique. Flow Meas. Instrum. 19, 293300.Google Scholar

van Gils et al. supplementary movie

High-speed image recording of the bubbly turbulent flow taken through the transparent OC of the T3C facility for the moderate DR regime at Re = 5.1 x 10^5 and α = 3%. The movie is played back 167 times slower than recorded.

Download van Gils et al. supplementary movie(Video)
Video 10.5 MB

van Gils et al. supplementary movie

High-speed image recording of the bubbly turbulent flow taken through the transparent OC of the T3C facility for the strong DR regime at Re = 1.0 x 10^6 and α = 3%. The movie is played back 167 times slower than recorded.

Download van Gils et al. supplementary movie(Video)
Video 10.5 MB