Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-12-01T09:00:29.377Z Has data issue: false hasContentIssue false

Ice breaking by a collapsing bubble

Published online by Cambridge University Press:  23 February 2018

Pu Cui
Affiliation:
College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
A-Man Zhang*
Affiliation:
College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
Shiping Wang
Affiliation:
College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
Boo Cheong Khoo
Affiliation:
Department of Mechanical Engineering, National University of Singapore, 117576, Singapore
*
Email address for correspondence: [email protected]

Abstract

This work focuses on using the power of a collapsing bubble in ice breaking. We experimentally validated the possibility and investigated the mechanism of ice breaking with a single collapsing bubble, where the bubble was generated by underwater electric discharge and collapsed at various distances under ice plates with different thicknesses. Characteristics of the ice fracturing, bubble jets and shock waves emitted during the collapse of the bubble were captured. The pattern of the ice fracturing is related to the ice thickness and the bubble–ice distance. Fractures develop from the top of the ice plate, i.e. the ice–air interface, and this is attributed to the tension caused by the reflection of the shock waves at the interface. Such fracturing is lessened when the thickness of the ice plate or the bubble–ice distance increases. Fractures may also form from the bottom of the ice plate upon the shock wave incidence when the bubble–ice distance is sufficiently small. The ice plate motion and its effect on the bubble behaviour were analysed. The ice plate motion results in higher jet speed and greater elongation of the bubble shape along the vertical direction. It also causes the bubble initiated close to the ice plate to split and emit multiple shock waves at the end of the collapse. The findings suggest that collapsing bubbles can be used as a brand new way of ice breaking.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avila, S. R. G. & Ohl, C.-D. 2016 Fragmentation of acoustically levitating droplets by laser-induced cavitation bubbles. J. Fluid Mech. 805, 551576.Google Scholar
Avila, S. R. G., Song, C. & Ohl, C.-D. 2015 Fast transient microjets induced by hemispherical cavitation bubbles. J. Fluid Mech. 767, 3151.CrossRefGoogle Scholar
Benjamin, T. & Ellis, A. T. 1966 The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Phil. Trans. R. Soc. Lond. A 260 (1110), 221240.Google Scholar
Blake, J. R., Leppinen, D. M. & Wang, Q. 2015 Cavitation and bubble dynamics: the Kelvin impulse and its applications. Interface Focus 5, 20150017.CrossRefGoogle ScholarPubMed
Brett, J. M. & Yiannakopolous, G. 2008 A study of explosive effects in close proximity to a submerged cylinder. Intl J. Impact Engng 35, 206225.Google Scholar
Brujan, E., Ikeda, T. & Matsumoto, Y. 2005 Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound. Phys. Med. Biol. 50, 4797.CrossRefGoogle ScholarPubMed
Brujan, E. A., Keen, G. S., Vogel, A. & Blake, J. R. 2002 The final stage of the collapse of a cavitation bubble close to a rigid boundary. Phys. Fluids 14, 8592.Google Scholar
Brujan, E. A., Nahen, K., Schmidt, P. & Vogel, A. 2001 Dynamics of laser-induced cavitation bubbles near an elastic boundary. J. Fluid Mech. 433, 251281.Google Scholar
Buogo, S. & Cannelli, G. B. 2002 Implosion of an underwater spark-generated bubble and acoustic energy evaluation using the Rayleigh model. J. Acoust. Soc. Am. 111, 25942600.Google Scholar
Buogo, S. & Vokurka, K. 2010 Intensity of oscillation of spark-generated bubbles. J. Sound Vib. 329, 42664278.Google Scholar
Chahine, G. L., Frederick, G. S., Lambrecht, C. J., Harris, G. S. & Mair, H. U. 1995 Spark-generated bubbles as laboratory-scale models of underwater explosions and their use for validation of simulation tools. In Proceedings of 66th Sock and Vibrations Symposium, vol. 2, pp. 265276. Shock & Vibration Information Analysis Center.Google Scholar
Chahine, G. L., Kapahi, A., Choi, J. & Hsiao, C. 2016 Modeling of surface cleaning by cavitation bubble dynamics and collapse. Ultrason. Sonochemi. 29, 528549.CrossRefGoogle ScholarPubMed
Chalmers, B. 1964 Principles of Solidification. Wiley.Google Scholar
Chow, R., Blindt, R., Chivers, R. & Povey, M. J. W. 2005 A study on the primary and secondary nucleation of ice by power ultrasound. Ultrasonics 43, 227230.CrossRefGoogle Scholar
Cole, R. H. 1948 Underwater Explosions. Princeton University Press.Google Scholar
Curtiss, G. A., Leppinen, D. M., Wang, Q. X. & Blake, J. R. 2013 Ultrasonic cavitation near a tissue layer. J. Fluid Mech. 730, 245272.Google Scholar
de Graaf, K., Brandner, P. & Penesis, I. 2014 The pressure field generated by a seismic airgun. Exp. Therm. Fluid Sci. 55, 239249.CrossRefGoogle Scholar
Didenko, Y. T. & Suslick, K. S. 2002 The energy efficiency of formation of photons, radicals and ions during single-bubble cavitation. Nature 418, 394397.Google Scholar
Dijkink, R. & Ohl, C. 2008 Laser-induced cavitation based micropump. Lab on a Chip 8, 16761681.Google Scholar
Flannigan, D. J. & Suslick, K. S. 2005 Plasma formation and temperature measurement during single-bubble cavitation. Nature 434, 5255.Google Scholar
Goh, B. H. T., Gong, S. W., Ohl, S.-W. & Khoo, B. C. 2017 Spark-generated bubble near an elastic sphere. Intl J. Multiphase Flow 90, 156166.CrossRefGoogle Scholar
Han, B., Köhler, K., Jungnickel, K., Mettin, R., Lauterborn, W. & Vogel, A. 2015 Dynamics of laser-induced bubble pairs. J. Fluid Mech. 771, 706742.Google Scholar
Helfield, B., Chen, X., Watkins, S. C. & Villanueva, F. S. 2016 Biophysical insight into mechanisms of sonoporation. Proc. Natl Acad. Sci. USA 113, 99839988.Google Scholar
Hobbs, P. V. 1974 Ice Physics. Oxford University Press.Google Scholar
Hsiao, C.-T., Jayaprakash, A., Kapahi, A., Choi, J.-K. & Chahine, G. L. 2014 Modelling of material pitting from cavitation bubble collapse. J. Fluid Mech. 755, 142175.Google Scholar
Huang, B., Young, Y. L., Wang, G. & Shyy, W. 2013 Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation. J. Fluids Engng 135, 071301-071301-16.Google Scholar
Hung, C. F. & Hwangfu, J. J. 2010 Experimental study of the behaviour of mini-charge underwater explosion bubbles near different boundaries. J. Fluid Mech. 651, 5580.Google Scholar
Hunt, J. & Jackson, K. 1966 Nucleation of solid in an undercooled liquid by cavitation. J. Appl. Phys. 37, 254257.Google Scholar
Jamaluddin, A. R., Ball, G. J., Turangan, C. & Leighton, T. G. 2011 The collapse of single bubbles and approximation of the far-field acoustic emissions for cavitation induced by shock wave lithotripsy. J. Fluid Mech. 677, 305341.Google Scholar
Ji, B., Luo, X., Arndt, R. E. A. & Wu, Y. 2014 Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation–vortex interaction. Ocean Engng 87, 6477.Google Scholar
Johnson, D. T. 1994 Understanding air-gun bubble behavior. Geophysics 59, 17291734.Google Scholar
Klaseboer, E., Hung, K. C., Wang, C., Wang, C. W., Khoo, B. C., Boyce, P., Debono, S. & Charlier, H. 2005 Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure. J. Fluid Mech. 537, 387413.CrossRefGoogle Scholar
Koukouvinis, P., Gavaises, M., Supponen, O. & Farhat, M. 2016 Numerical simulation of a collapsing bubble subject to gravity. Phys. Fluids 28, 032110.Google Scholar
Krasovitski, B., Frenkel, V., Shoham, S. & Kimmel, E. 2011 Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proc. Natl Acad. Sci. USA 108, 32583263.Google Scholar
Lamminen, M. O., Walker, H. W. & Weavers, L. K. 2004 Mechanisms and factors influencing the ultrasonic cleaning of particle-fouled ceramic membranes. J. Membr. Sci. 237, 213223.Google Scholar
Lauterborn, W. & Thomas, K. 2010 Physics of bubble oscillations. Rep. Prog. Phys. 73, 106501.CrossRefGoogle Scholar
Lee, M., Klaseboer, E. & Khoo, B. C. 2007 On the boundary integral method for the rebounding bubble. J. Fluid Mech. 570, 407429.Google Scholar
Lindau, O. & Lauterborn, W. 2003 Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. J. Fluid Mech. 479, 327348.Google Scholar
Lindinger, B., Mettin, R., Chow, R. & Lauterborn, W. 2007 Ice crystallization induced by optical breakdown. Phys. Rev. Lett. 99, 045701.Google Scholar
Lohse, D., Schmitz, B. & Versluis, M. 2001 Snapping shrimp make flashing bubbles. Nature 413, 477478.Google Scholar
Mason, T. J. 2016 Ultrasonic cleaning: an historical perspective. Ultrason. Sonochem. 29, 519523.Google Scholar
Obreschkow, D., Tinguely, M., Dorsaz, N., Kobel, P., De Bosset, A. & Farhat, M. 2011 Universal scaling law for jets of collapsing bubbles. Phys. Rev. Lett. 107, 204501.Google Scholar
Ohl, C.-D., Arora, M., Ikink, R., de Jong, N., Versluis, M., Delius, M. & Lohse, D. 2006 Sonoporation from jetting cavitation bubbles. Biophys J. 91, 42854295.Google Scholar
Philipp, A. & Lauterborn, W. 1998 Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 361, 75116.Google Scholar
Ruecroft, G., Hipkiss, D., Ly, T., Maxted, N. & Cains, P. W. 2005 Sonocrystallization: the use of ultrasound for improved industrial crystallization. Org. Process Res. Dev. 9, 923932.CrossRefGoogle Scholar
Schulson, E. M., Lim, P. & Lee, R. 1984 A brittle to ductile transition in ice under tension. Phil. Mag. A 49, 353363.Google Scholar
Shaw, S. J. & Spelt, P. D. M. 2010 Shock emission from collapsing gas bubbles. J. Fluid Mech. 646, 363373.Google Scholar
Shima, A., Takayama, K., Tomita, Y. & Miura, N. 1981 An experimental study on effects of a solid wall on the motion of bubbles and shock waves in bubble collapse. Acta Acust. Acust. 48, 293301.Google Scholar
Shutler, N. D. & Mesler, R. B. 1965 A photographic study of the dynamics and damage capabilities of bubbles collapsing near solid boundaries. J. Basic Engng 87, 511517.CrossRefGoogle Scholar
Stride, E. & Coussios, C. 2010 Cavitation and contrast: the use of bubbles in ultrasound imaging and therapy. Proc. Inst. Mech. Engrs H 224, 171191.Google Scholar
Stride, E. & Saffari, N. 2003 Microbubble ultrasound contrast agents: a review. Proc. Inst. Mech. Engrs H 217, 429447.Google Scholar
Supponen, O., Obreschkow, D., Tinguely, M., Kobel, P., Dorsaz, N. & Farhat, M. 2016 Scaling laws for jets of single cavitation bubbles. J. Fluid Mech. 802, 263293.Google Scholar
Ter Haar, G. 2007 Therapeutic applications of ultrasound. Prog. Biophys. Mol. Bio. 93, 111129.Google Scholar
Tomita, Y. & Shima, A. 1986 Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse. J. Fluid Mech. 169, 535564.Google Scholar
Tomita, Y., Tsubota, M. & Annaka, N. 2003 Energy evaluation of cavitation bubble generation and shock wave emission by laser focusing in liquid nitrogen. J. Appl. Phys. 93, 30393048.Google Scholar
Turangan, C. K., Ong, G. P., Klaseboer, E. & Khoo, B. C. 2006 Experimental and numerical study of transient bubble-elastic membrane interaction. J. Appl. Phys. 100, 054910-054910-7.Google Scholar
Versluis, M., Schmitz, B., von der Heydt, A. & Lohse, D. 2000 How snapping shrimp snap: through cavitating bubbles. Science 289, 21142117.Google Scholar
Vogel, A., Lauterborn, W. & Timm, R. 1989 Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J. Fluid Mech. 206, 299338.Google Scholar
Xie, Y., Chindam, C., Nama, N., Yang, S., Lu, M., Zhao, Y., Mai, J. D., Costanzo, F. D. & Huang, T. J. 2015 Exploring bubble oscillation and mass transfer enhancement in acoustic-assisted liquid–liquid extraction with a microfluidic device. Sci. Rep. 5, 12572.Google Scholar
Zhang, A. M., Cui, P., Cui, J. & Wang, Q. X. 2015 Experimental study on bubble dynamics subject to buoyancy. J. Fluid Mech. 776, 137160.Google Scholar
Zhang, A. M., Li, S. & Cui, J. 2015 Study on splitting of a toroidal bubble near a rigid boundary. Phys. Fluids 27, 062102.Google Scholar
Zhang, Y., Zhang, Y., Qian, Z., Ji, B. & Wu, Y. 2016 A review of microscopic interactions between cavitation bubbles and particles in silt-laden flow. J. Renew. Sustain. Energy Rev. 56, 303318.Google Scholar
Zhong, P. 2013 Shock wave lithotripsy. In Bubble Dynamics and Shock Waves, pp. 291338. Springer.Google Scholar
Zhu, S., Cocks, F. H., Preminger, G. M. & Zhong, P. 2002 The role of stress waves and cavitation in stone comminution in shock wave lithotripsy. Ultrasound Med. Biol. 28, 661671.Google Scholar
Ziolkowski, A. 1970 A method for calculating the output pressure waveform from an air gun. Geophys. J. Intl 21, 137161.Google Scholar