Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-19T01:17:23.808Z Has data issue: false hasContentIssue false

Hydromechanics of swimming propulsion. Part 1. Swimming of a two-dimensional flexible plate at variable forward speeds in an inviscid fluid

Published online by Cambridge University Press:  29 March 2006

T. Yao-Tsu Wu
Affiliation:
California Institute of Technology, Pasadena, California

Abstract

The most effective movements of swimming aquatic animals of almost all sizes appear to have the form of a transverse wave progressing along the body from head to tail. The main features of this undulatory mode of propulsion are discussed for the case of large Reynolds number, based on the principle of energy conservation. The general problem of a two-dimensional flexible plate, swimming at arbitrary, unsteady forward speeds, is solved by applying the linearized in viscid flow theory. The large-time asymptotic behaviour of an initial-value harmonic motion shows the decay of the transient terms. For a flexible plate starting with a constant acceleration from at rest, the small-time solution is evaluated and the initial optimum shape is determined for the maximum thrust under conditions of fixed power and negligible body recoil.

Type
Research Article
Copyright
© 1971 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fung, Y. C. 1967 Am. J. Physiology, 213, 1532.
Gray, J. 1948 Nature, Lond. 161, 199.
Gray, J. 1949 Nature, Lond. 164, 1073.
Gray, J. 1968 Animal Locomotion. London: Weidenfeld & Nicholson.
Gray, J. & Hancock, G. J. 1955 J. Exp. Biol. 32, 802.
Hancock, G. J. 1953 Proc. Roy. Soc. A, 217, 96.
Johannessen, C. L. & Harder, J. A. 1960 Science, 132, 1550.
Kármán, T. von & Burgers, J. M. 1943 General aerodynamic theory: perfect fluids. Aerodynamic Theory E2 (ed. W. F. Durand).
Lang, T. G. 1966 Hydrodynamic analysis of cetacean performance. Whales, Dolphins and Porpoises (ed. K. S. Norris). University of California.
Lang, T. G. & Daybell, D. A. 1963 NAVWEPS Rep. 8060; NOTS Tech. Publ. 3063.
Lang, T. G. & Norris, K. S. 1966 Science, 151, 588.
Lang, T. G. & Pryor, K. 1966 Science, 152, 531.
Lighthill, M. J. 1952 Comm. Pure Appl. Math. 5, 109.
Lighthill, M. J. 1960 J. Fluid Mech. 9, 305.
Lighthill, M. J. 1969 Ann. Rev. Fluid Mech. 1, 413.
Lighthill, M. J. 1970 J. Fluid Mech. 44, 265.
Muskhelishvili, N. I. 1953 Singular Integral Equations. Groningen, Holland: Noordhoff.
Osborne, M. F. M. 1960 J. Exp. Biol. 38, 365.
Reynolds, A. J. 1965 J. Fluid Mech. 23, 241.
Saffman, P. G. 1967 J. Fluid Mech. 28, 385.
Siekmann, J. 1963 J. Fluid Mech. 15, 399.
Stokes, G. G. 1851 Trans. Camb. Phil. Soc. 9, 8.
Taylor, G. I. 1951 Proc. Roy. Soc. A, 209, 447.
Taylor, G. I. 1952a Proc. Roy. Soc. A, 211, 225.
Taylor, G. I. 1952b Proc. Roy. Soc. A, 214, 158.
Tuck, E. O. 1968 J. Fluid Mech. 31, 305.
Wu, T. Y. 1961 J. Fluid Mech. 10, 321.