Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T06:22:28.093Z Has data issue: false hasContentIssue false

Hydrodynamic forces on steady and oscillating porous particles

Published online by Cambridge University Press:  20 August 2012

Santtu T. T. Ollila
Affiliation:
Department of Applied Mathematics, The University of Western Ontario, London, Ontario, N6A 5B7, Canada COMP CoE at Department of Applied Physics, Aalto University School of Science and Technology, PO Box 11000, FIN-00076 Aalto, Espoo, Finland
Tapio Ala-Nissila
Affiliation:
COMP CoE at Department of Applied Physics, Aalto University School of Science and Technology, PO Box 11000, FIN-00076 Aalto, Espoo, Finland
Colin Denniston*
Affiliation:
Department of Applied Mathematics, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
*
Email address for correspondence: [email protected]

Abstract

We derive new analytical results for the hydrodynamic force exerted on a sinusoidally oscillating porous shell and a sphere of uniform density in the Stokes limit. The coupling between the spherical particle and the solvent is done using the Debye–Bueche–Brinkman (DBB) model, i.e. by a frictional force proportional to the local velocity difference between the permeable particle and the solvent. We compare our analytical results and existing dynamic theories to lattice–Boltzmann simulations of the full Navier–Stokes equations for the oscillating porous particle. We find our analytical results to agree with simulations over a broad range of porosities and frequencies.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Abade, G. C., Cichocki, B., Ekiel-Jezewska, M. L., Nägele, G. & Wajnryb, E. 2010a Dynamics of permeable particles in concentrated suspensions. Phys. Rev. E 81, 020404(R).CrossRefGoogle ScholarPubMed
2. Abade, G. C., Cichocki, B., Ekiel-Jezewska, M. L., Nägele, G. & Wajnryb, E. 2010b Short-time dynamics of permeable particles in concentrated suspensions. J. Chem. Phys. 132, 014503.CrossRefGoogle ScholarPubMed
3. Ahlrichs, P. & Dünweg, B. 1998 Lattice Boltzmann simulation of polymer-solvent systems. Intl J. Mod. Phys. C 9, 14291438.CrossRefGoogle Scholar
4. Ahlrichs, P. & Dünweg, B. 1999 Simulation of a single polymer chain in solution by combining Lattice Boltzmann and molecular dynamics.. J. Chem. Phys. 111, 82258239.CrossRefGoogle Scholar
5. Amro, M. M. & Al-Homadhi, E. S. 2006 Enhanced oil recovery using sound-wave stimulation. Final Research Report No. 53/426. King Saud University.Google Scholar
6. Babadagli, T. 2003 Selection of proper enhanced oil recovery fluid for efficient matrix recovery in fractured oil reservoirs. Colloids Surf. A 223, 157175.CrossRefGoogle Scholar
7. Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
8. Beavers, G. S. & Joseph, D. D. 1967 Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197207.CrossRefGoogle Scholar
9. Bergendahl, J. & Grasso, D. 2000 Prediction of colloid detachment in a model porous media: hydrodynamics. Chem. Engng Sci. 55, 15231532.CrossRefGoogle Scholar
10. Bhatnagar, P. L., Gross, E. P. & Krook, M. 1954 A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511525.CrossRefGoogle Scholar
11. Bhatt, B. S. & Sacheti, N. C. 1994 Flow past a porous spherical shell using the Brinkman model. J. Phys. D: Appl. Phys. 27, 3741.CrossRefGoogle Scholar
12. Brinkman, H. C. 1947a A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A1, 2734.Google Scholar
13. Brinkman, H. C. 1947b On the permeability of media consisting of closely packed porous particles. Appl. Sci. Res. A1, 8186.Google Scholar
14. Burden, R. L. & Faires, J. D. 2005 Numerical Analysis, 8th edn. Thomson.Google Scholar
15. Chen, S. & Doolen, G. D. 1998 Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329364.CrossRefGoogle Scholar
16. Cichocki, B. & Felderhof, B. U. 2009 Hydrodynamic friction coefficients of coated spherical particles. J. Chem. Phys. 130, 164712.CrossRefGoogle ScholarPubMed
17. Debye, P. & Bueche, A. M. 1948 Intrinsic viscosity, diffusion, and sedimentation rate of polymers in solution. J. Chem. Phys. 16, 573579.CrossRefGoogle Scholar
18. Del Bonis-O’Donnell, J. T., Reisner, W. & Stein, D. 2009 Pressure-driven DNA transport across an artificial nanotopography. New J. Phys. 11, 075032.CrossRefGoogle Scholar
19. Deutch, J. M. & Felderhof, B. U. 1975 Frictional properties of dilute polymer solutions. II. The effect of preaveraging. J. Chem. Phys. 62, 23982405.CrossRefGoogle Scholar
20. Edwards, D. A., Hanes, J., Caponetti, G., Hrkack, J., Ben-Jebria, A., Eskew, M. L., Mintzes, J., Deaver, D., Lotan, N. & Langer, R. 1997 Large porous particles for pulmonary drug delivery. Science 276, 18681872.CrossRefGoogle ScholarPubMed
21. Felderhof, B. U. 1975 Frictional properties of dilute polymer solutions. III. Translational-friction coefficient. Physica A 80, 6375.CrossRefGoogle Scholar
22. Felderhof, B. U. & Deutch, J. M. 1975 Frictional properties of dilute polymer solutions I. Rotational friction coefficient. J. Chem. Phys. 62, 23912397.CrossRefGoogle Scholar
23. Fu, J. P., Schoch, R. B., Stevens, A. L., Tannenbaum, S. R. & Han, J. Y. 2007 A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins. Nat. Nanotechnol. 2, 121.CrossRefGoogle ScholarPubMed
24. Goldman, A., Cox, R. & Brenner, H. 1967 Slow viscous motion of a sphere parallel to a plane wall – II Couette flow. Chem. Engng Sci. 22, 653660.CrossRefGoogle Scholar
25. Graebel, W. P. 2007 Advanced Fluid Mechanics. Academic.Google Scholar
26. Higuera, F., Succi, S. & Benzi, R. 1989 Lattice gas dynamics with enhanced collisions. Europhys. Lett. 9, 345349.CrossRefGoogle Scholar
27. Jäger, W. & Mikelić, A. 2000 On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM Soc. Ind. Appl. Maths J. Appl. Maths 60, 1111.Google Scholar
28. Jimenez, F. H. J. 1989 Boltzmann approach to lattice gas simulations. Europhys. Lett. 9, 663.Google Scholar
29. Kang, Q., Zhang, D. & Chen, S. 2002 Unified Lattice Boltzmann method for flow in multiscale porous media. Phys. Rev. E 66, 056307.CrossRefGoogle ScholarPubMed
30. Kell, G. S. 1970 Isothermal compressibility of liquid water at 1 atm. J. Chem. Engng Data 15, 119122.CrossRefGoogle Scholar
31. Kirkwood, J. G. & Riseman, J. 1948 The intrinsic viscosities and diffusion constants of flexible macromolecules in solution. J. Chem. Phys. 16, 565573.CrossRefGoogle Scholar
32. Lamb, H. 1932 Hydrodynamics, 6th edn. MacMillan.Google Scholar
33. Landau, L. D. & Lifschitz, E. M. 1987 Fluid Mechanics, 2nd edn. Pergamon.Google Scholar
34. Liron, N. & Mochon, S. 1976 Stokes flow for a stokeslet between two parallel flat plates. J. Engng Maths 10, 287303.CrossRefGoogle Scholar
35. Looker, J. R. & Carnie, S. L. 2004 The hydrodynamics of an oscillating porous sphere. Phys. Fluids 16, 6272.CrossRefGoogle Scholar
36. Lundgren, T. S. 1972 Slow flow through stationary random beds and suspensions of spheres. J. Fluid Mech. 51, 273299.CrossRefGoogle Scholar
37. Neale, G., Epstein, N. & Nader, W. 1973 Creeping flow relative to permeable spheres. Chem. Engng Sci. 28, 18651875.CrossRefGoogle Scholar
38. Ollila, S. T. T., Denniston, C., Karttunen, M. & Ala-Nissila, T. 2011a Fluctuating Lattice–Boltzmann model for complex fluids. J. Chem. Phys. 134, 064902.CrossRefGoogle ScholarPubMed
39. Ollila, S. T. T., Smith, C. J., Ala-Nissila, T. & Denniston, C. 2011 b Hydrodynamic consistency of solute particles in the lattice Boltzmann method. Multiscale Model. Simul. (submitted).Google Scholar
40. Peskin, C. S. 2002 The immersed boundary method. Acta Numerica 11, 479.CrossRefGoogle Scholar
41. Ramaswamy, S., Gupta, M., Goela, A., Aaltosalmi, U., Kataja, M., Koponen, A. & Ramarao, B. V. 2004 Efficient simulation of flow in and transport in porous media. Colloids Surf. A 241, 323333.CrossRefGoogle Scholar
42. Smith, C. J. & Denniston, C. 2007 Elastic response of a nematic liquid crystal to an immersed nanowire. J. Appl. Phys. 101, 014305.CrossRefGoogle Scholar
43. Sparreboom, W., van der Berg, A. & Eijkel, J. C. T. 2010 Transport in nanofluidic systems: a review of theory and applications. New J. Phys. 12, 015004.CrossRefGoogle Scholar
44. Stokes, G. 1880 Mathematical and Physical Papers, vol. I. Cambridge University Press, located at www.archive.org/details/mathphyspapers01stokrich.Google Scholar
45. Stokes, G. G. 1901 Mathematical and Physical Papers, vol. III. Cambridge University Press.Google Scholar
46. Succi, S. 2001 The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press.CrossRefGoogle Scholar
47. Sukop, M. C. & Thorne, D. T. J. 2006 Lattice Boltzmann Modelling: An Introduction for Geoscientists and Engineers. Springer.CrossRefGoogle Scholar
48. Sutherland, D. N. & Tan, C. T. 1970 Sedimentation of a porous sphere. Chem. Engng Sci. 25, 19481950.CrossRefGoogle Scholar
49. Swift, M. R., Osborn, W. R. & Yeomans, J. M. 1995 Lattice Boltzmann simulation of nonideal fluids. Phys. Rev. Lett. 75, 830833.CrossRefGoogle ScholarPubMed
50. Vainshtein, P. & Shapiro, M. 2009 Forces on a porous particle in an oscillating flow. J. Colloid Interface Sci. 330, 149155.CrossRefGoogle Scholar
51. Vainshtein, P., Shapiro, M. & Gutfinger, C. 2002 Creeping flow past and within a permeable spheroid. Intl J. Multiphase Flow 28, 19451963.CrossRefGoogle Scholar
52. Womersley, J. R. 1955 Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127, 553563.CrossRefGoogle ScholarPubMed