Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-19T12:48:46.996Z Has data issue: false hasContentIssue false

Homeotropic nematics heated from above under magnetic fields: convective thresholds and geometry

Published online by Cambridge University Press:  20 April 2006

J. Salan
Affiliation:
E.S.P.C.I., 10 rue Vauquelin, 75005 Paris, France
Also at: Laboratoire de Physique des Solides, Université Paris-Sud, 91405 Orsay.
Permanent address: Departemento de Física Fundamental, U.N.E.D., Apdo Correos 54487 Madrid 3, Spain.
E. Guyon
Affiliation:
E.S.P.C.I., 10 rue Vauquelin, 75005 Paris, France
Also at: Laboratoire de Physique des Solides, Université Paris-Sud, 91405 Orsay.

Abstract

The thermal convective instability of a nematic layer aligned perpendicular to horizontal plates displays original characteristics, due to the coupling of the nematic distortion with the temperature gradient; in particular the adverse temperature gradient threshold ΔTc can be modified by the application of a vertical (stabilizing) or horizontal (destabilizing) magnetic field. In addition, the application of a magnetic field H controls both the threshold of this instability and the geometric form of the instabilities above ΔTc.

Type
Research Article
Copyright
© 1983 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barratt, P. J. & Sloan, D. M. 1976 Thermal instabilities in nematic liquid crystals. J. Phys. A: Math. & Gen. 9, 1987.Google Scholar
Busse, F. H. 1978 Non-linear properties of thermal convection Rep. Prog. Phys. 41, 1929.Google Scholar
Currie, P. K. 1973 The orientation of liquid crystals by temperature gradient Rheol. Acta 12, 165.Google Scholar
Deuling, H. J. 1978 Elasticity of nematic liquid crystals Solid State Phys. Suppl. 14, 77.Google Scholar
DUBOIS-VIOLETTE, E. 1971 Instabilités hydrodynamiques d'un nématique soumis à un gradient thermique C.r. Acad. Sci. Paris 275, 923.Google Scholar
DUBOIS-VIOLETTE, E. 1974 Determination of thermal instability thresholds for homeotropic and planar nematic liquid crystal samples Solid State Commun. 14, 767.Google Scholar
Dubois-Violette, E., Guyon, E. & Pieranski, P. 1974 Heat convection in a nematic liquid crystal Mol. Cryst. Liq. Cryst. 26, 193.Google Scholar
Ericksen, J. L. 1962 Hydrostatic theory of liquid crystals Arch. Rat. Mech. Anal. 9, 371.Google Scholar
Fitzjarrald, D. E. 1981 An experimental investigation of convection in a fluid that exhibits phase change J. Fluid Mech. 102, 85.Google Scholar
Gabay, M. 1981 Etude de la thermodynamique des verres de spin dans le cadre du champ moyen et de phénomènes critiques dans les cristaux liquides et polymères. Thèse doctorat, Orsay.
Gähwiller, CH. 1973 Direct determination of the five independent viscosity coefficients of nematic liquid crystals Mol. Cryst. Liq. Cryst. 20, 301.Google Scholar
Gerbaud, C. 1980 Etude des instabilités convectives dans les phénomènes de Rayleigh–Bénard–Marangoni. Thèse 3ème cycle, Université Aix Marseille I.
Guyon, E. & Pieranski, P. 1973 Convective instabilities in nematic liquid crystals Physica 73, 184.Google Scholar
Guyon, E., Pieranski, P. & Salan, J. 1979 Overstability and inverted bifurcation in homeotropic nematics heated from below J. Fluid Mech. 93, 65.Google Scholar
Guazzelli, E. & Guyon, E. 1981 Fusion partielle d'une structure convective bidimensionnelle C.R. Acad. Sci. Paris 292, 141.Google Scholar
Guazzelli, E., Guyon, E. & Wesfreid, J. E. 1981 Defects in convective structures in an hydrodynamic instability. In Symmetries and Broken Symmetries in Condensed Matter Physics (ed. W. Boccara). Paris: IDSET, 456.
Lekkerkerker, H. N. W. 1977 Oscillatory convective instabilities in nematic liquid crystals J. Phys. Lettres 38, 277.Google Scholar
Leslie, F. M. 1968 Some constitutive equations for liquid crystals Arch. Rat. Mech. Anal. 28, 265.Google Scholar
Liang, F. F., Vidal, A. & Acrivos, A. 1969 Buoyancy driven convection in cylindrical geometries J. Fluid Mech. 36, 239.Google Scholar
Palm, E., Ellingsen, T. & Gjevik, B. 1967 On the occurrence of cellular motion in Bénard convection J. Fluid Mech. 30, 651.Google Scholar
Pantaloni, J., Cerisier, P., Bailleux, R. & Gerbaud, C. 1980 Convection de Bénard Marangoni: un pendule de Foucault? J. Phys. Lettres 42, 147.Google Scholar
Pearson, J. R. A. 1958 On convection cells induced by surface tension J. Fluid Mech. 4, 489.Google Scholar
Pieranski, P., DUBOIS-VIOLETTE, E. & Guyon, E. 1973 Heat convection in liquid crystals heated from above Phys. Rev. Lett. 30, 736.Google Scholar
Pomeau, Y. & Manneville, P. 1979 Stability and fluctuations of a spatially periodic convective flow J. Phys. Lettres 40, 609.Google Scholar
Prost, J. & Gasparoux, H. 1971 Determination of twist viscosity coefficient in the nematic mesophases. Phys. Lett. 36 A, 245.Google Scholar
Sazontov, A. 1980 Concerning the selection of convective structure in a fluid with temperature-dependent viscosity Isv. Atmos. Oceanic Phys. 16, 319.Google Scholar
Storck, K. & MüLLER, U. 1975 Convection in boxes: an experimental investigation in vertical cylinders and annuli. J. Fluid Mech. 71, 231.Google Scholar
Toner, J. & Nelson, D. R. 1981 Smectic, cholesteric & Rayleigh Bénard order in two dimensions. Phys. Rev. B 23, 316.Google Scholar
Vilanove, R., Guyon, E., Mitescu, C. & Pieranski, P. 1974 Mesure de la conductivité thermique et détermination de l'orientation des molécules à l'interface nématique isotrope de MBBA J. Phys. (Paris) 35, 153.Google Scholar
Walgraef, D., Dewell, G. & Borckmans, P. 1981 Dissipative structures and broken symmetry J. Chem. Phys. 74, 755.Google Scholar
Wesfreid, J. E. & Croquette, V. 1980 Forced phase diffusion in Rayleigh Bénard convection Phys. Rev. Lett. 45, 634.Google Scholar