Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T22:47:19.431Z Has data issue: false hasContentIssue false

High-speed shear-driven dynamos. Part 2. Numerical analysis

Published online by Cambridge University Press:  08 August 2019

Kengo Deguchi*
Affiliation:
School of Mathematics, Monash University, VIC 3800, Australia
*
Email address for correspondence: [email protected]

Abstract

This paper aims to numerically verify the large Reynolds number asymptotic theory of magneto-hydrodynamic (MHD) flows proposed in the companion paper Deguchi (J. Fluid Mech., vol. 868, 2019, pp. 176–211). To avoid any complexity associated with the chaotic nature of turbulence and flow geometry, nonlinear steady solutions of the viscous resistive MHD equations in plane Couette flow have been utilised. Two classes of nonlinear MHD states, which convert kinematic energy to magnetic energy effectively, have been determined. The first class of nonlinear states can be obtained when a small spanwise uniform magnetic field is applied to the known hydrodynamic solution branch of plane Couette flow. The nonlinear states are characterised by the hydrodynamic/magnetic roll–streak and the resonant layer at which strong vorticity and current sheets are observed. These flow features, and the induced strong streamwise magnetic field, are fully consistent with the vortex/Alfvén wave interaction theory proposed in the companion paper. When the spanwise uniform magnetic field is switched off, the solutions become purely hydrodynamic. However, the second class of ‘self-sustained shear-driven dynamos’ at the zero external magnetic field limit can be found by homotopy via the forced states subject to a spanwise uniform current field. The discovery of the dynamo states has motivated the corresponding large Reynolds number matched asymptotic analysis in the companion paper. Here, the reduced equations derived by the asymptotic theory have been solved numerically. The asymptotic solution provides remarkably good predictions for the finite Reynolds number dynamo solutions.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antolin, P. & Shibata, K. 2010 The role of torsional Alfvén waves in coronal heating. Astrophys. J. 712, 494510.Google Scholar
Arregui, I., Terradas, J. O. R. & Ballester, J. L. 2008 Damping of fast magnetohydrodynamic oscillations in quiescent filament threads. Astrophys. J. 682, L141L144.Google Scholar
Balbus, S. A. & Hawley, J. F. 1991 A powerful local shear instability in weakly magnetized disks. I. Linear analysis. Astrophys. J. 376, 214222.Google Scholar
Blackburn, H. M., Hall, P. & Sherwin, S. 2013 Lower branch equilibria in Couette flow: the emergence of canonical states for arbitrary shear flows. J. Fluid Mech. 726, R2.Google Scholar
Clever, R. M. & Busse, F. H. 1992 Three-dimensional convection in a horizontal fluid layer subjected to a constant shear. J. Fluid Mech. 234, 511527.Google Scholar
Cowling, T. G. 1934 The magnetic fields of sunspots. Mon. Not. R. Astron. Soc. 94, 3948.Google Scholar
Deguchi, K. 2015 Self-sustained states at Kolmogorov microscale. J. Fluid Mech. 781, R6.Google Scholar
Deguchi, K. 2017 Scaling of small vortices in stably stratified shear flows. J. Fluid Mech. 821, 582594.Google Scholar
Deguchi, K. 2019 High-speed shear driven dynamos. Part 1. Asymptotic analysis. J. Fluid Mech. 868, 176211.Google Scholar
Deguchi, K. & Hall, P. 2014a Canonical exact coherent structures embedded in high Reynolds number flows. Phil. Trans. R. Soc. Lond. A 372 (20130352), 119.Google Scholar
Deguchi, K. & Hall, P. 2014b The high Reynolds number asymptotic development of nonlinear equilibrium states in plane Couette flow. J. Fluid Mech. 750, 99112.Google Scholar
Deguchi, K. & Hall, P. 2014c Free-stream coherent structures in parallel boundary-layer flows. J. Fluid Mech. 752, 602625.Google Scholar
Deguchi, K. & Hall, P. 2015 Asymptotic descriptions of oblique coherent structures in shear flows. J. Fluid Mech. 782, 356367.Google Scholar
Deguchi, K. & Hall, P. 2016 On the instability of vortex–wave interaction states. J. Fluid Mech. 802, 634666.Google Scholar
Deguchi, K. & Walton, A. G. 2013a Axisymmetric travelling waves in annular sliding Couette flow at finite and asymptotically large Reynolds number. J. Fluid Mech. 720, 582617.Google Scholar
Deguchi, K. & Walton, A. G. 2013b A swirling spiral wave solution in pipe flow. J. Fluid Mech. 737, R2.Google Scholar
Deguchi, K. & Walton, A. G. 2018 Bifurcation of nonlinear Tollmien–Schlichting waves in a high-speed channel flow. J. Fluid Mech. 843, 5397.Google Scholar
Deguchi, K., Hall, P. & Walton, A. G. 2013 The emergence of localized vortex–wave interaction states in plane Couette flow. J. Fluid Mech. 721, 5885.Google Scholar
Dempsey, L. J., Deguchi, K., Hall, P. & Walton, A. G. 2016 Localized vortex/Tollmien–Schlichting wave interaction states in plane Poiseuille flow. J. Fluid Mech. 791, 97121.Google Scholar
Gibson, J. F., Halcrow, J. & Cvitanovic, P. 2008 Visualizing the geometry of state space in plane Couette flow. J. Fluid Mech. 611, 107130.Google Scholar
Gibson, J. F., Halcrow, J. & Cvitanovic, P. 2009 Equilibrium and travelling-wave solutions of plane Couette flow. J. Fluid Mech. 638, 124.Google Scholar
Guseva, A., Hollerbach, R., Willis, A. P. & Avila, M. 2017 Dynamo action in a quasi-Keplerian Taylor–Couette flow. Phys. Rev. Lett. 119, 164501.Google Scholar
Goossens, M., Hollweg, J. V. & Sakurai, T. 1992 Resonant behaviour of MHD waves on magnetic flux tubes. III. Effect of equilibrium flow. Solar Phys. 138, 233255.Google Scholar
Hall, P. & Horseman, N. 1991 The linear inviscid secondary instability of longitudinal vortex structures in boundary layers. J. Fluid Mech. 232, 357375.Google Scholar
Hall, P. & Sherwin, S. 2010 Streamwise vortices in shear flows: harbingers of transition and the skeleton of coherent structures. J. Fluid Mech. 661, 178205.Google Scholar
Hall, P. & Smith, F. T. 1991 On strongly nonlinear vortex/wave interactions in boundary-layer transition. J. Fluid Mech. 227, 641666.Google Scholar
Hamilton, J. M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.Google Scholar
Heinemann, T., McWilliams, J. C. & Schekochihin, A. A. 2011 Large-scale magnetic field generation by randomly forced shearing waves. Phys. Rev. Lett. 107, 255004.Google Scholar
Itano, T. & Generalis, S. 2009 Hairpin vortex solution in planar Couette flow: a tapestry of knotted vortices. Phys. Rev. Lett. 102, 114501.Google Scholar
Itano, T. & Toh, S. 2001 The dynamics of bursting process in wall turbulence. J. Phys. Soc. Japan 70, 703716.Google Scholar
Kawahara, G. & Kida, S. 2001 Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst. J. Fluid Mech. 449, 291300.Google Scholar
Kawahara, G., Uhlmann, M. & van Veen, L. 2012 The significance of simple invariant solutions in turbulent flows. Annu. Rev. Fluid Mech. 44, 203225.Google Scholar
Kreilos, T. & Eckhardt, B. 2012 Periodic orbits near onset of chaos in plane Couette flow. Chaos 22, 047505.Google Scholar
Lorenz, E. N. 1963 Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130141.Google Scholar
Loureiro, N. F., Schekochihin, A. A. & Cowley, S. C. 2007 Instability of current sheets and formation of plasmodia chains. Phys. Plasmas 14, 100703.Google Scholar
Lustro, J. R. T., Kawahara, G., van Veen, L., Shimizt, M. & Kokubu, H. 2019 The onset of transient turbulence in minimal plane Couette flow. J. Fluid Mech. 862, R2.Google Scholar
Marcotte, F. & Gissinger, C. 2016 Dynamo generated by the centrifugal instability. Phys. Rev. Fluids 1, 063602.Google Scholar
Nagata, M. 1990 Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity. J. Fluid Mech. 217, 519527.Google Scholar
Nauman, F. & Blackman, E. G. 2017 Sustained turbulence and magnetic energy in nonrotating shear flows. Phys. Rev. E 95, 033202.Google Scholar
Nore, C., Guermond, J.-L., Laguerre, R., Léorat, J. & Luddens, F. 2012 Nonlinear dynamo in a short Taylor–Couette setup. Phys. Fluids 24, 094106.Google Scholar
Okamoto, T. J., Antolin, P., Pontieu, B. E., Uitenbroek, H., van Doorsselaere, T. & Yokoyama, T. 2015 Resonant absorption of transverse oscillations and associated heating in a solar prominence. I. Observational aspects. Astrophys. J. 809 (71), 112.Google Scholar
Ozcakir, O., Tanveer, S., Hall, P. & Overman II, E. A. 2016 Travelling wave states in pipe flow. J. Fluid Mech. 791, 284328.Google Scholar
Rincon, F., Ogilvie, G. I. & Proctor, M. R. E. 2007 Self-sustaining nonlinear dynamo process in Keplerian shear flows. Phys. Rev. Lett. 98, 254502.Google Scholar
Rincon, F., Ogilvie, G. I., Proctor, M. R. E. & Cossu, C. 2008 Subcritical dynamos in shear flows. Astron. Nachr. 329, 750761.Google Scholar
Riols, A., Rincon, F., Cossu, C., Lesur, G., Longaretti, P.-Y., Ogilvie, G. I. & Herault, J. 2013 Global bifurcations to subcritical magnetorotational dynamo action in Keplerian shear flow. J. Fluid Mech. 731, 145.Google Scholar
Roberts, P. H. 1964 The stability of hydromagnetic Couette flow. Proc. Camb. Phil. Soc. 60, 635651.Google Scholar
Rudiger, G. 2003 Linear magnetohydrodynamic Taylor–Couette instability for liquid sodium. Phys. Rev. E 67, 046312.Google Scholar
Sakurai, T., Goossens, M. & Hollweg, J. V. 1991 Resonant behaviour of MHD waves on magnetic flux tubes. I. Connection formulae at the resonant surfaces. Solar Phys. 133, 227245.Google Scholar
Schmiegel, A.1999 Transition to turbulence in linearly stable shear flows. 133, PhD thesis. Philipps-Universität Marburg.Google Scholar
Skufca, J. D., Yorke, J. A. & Eckhardt, B. 2006 Edge of chaos in a parallel shear flow. Phys. Rev. Lett. 96, 174101.Google Scholar
Soler, R., Ruderman, M. S. & Goossens, M. 2012 Damped kink oscillations of flowing prominence threads. Astron. Astrophys. 546, A82.Google Scholar
Teed, R. J. & Proctor, M. R. E. 2017 Quasi-cyclic behaviour in non-linear simulations of the shear dynamo. Mon. Not. R. Astron. Soc. 467, 48584864.Google Scholar
Tobias, S. M. & Cattaneo, F. 2013 Shear-driven dynamo waves at high magnetic Reynolds number. Nature 497, 463465.Google Scholar
van Ballegooijen, A. A., Asgari-Targhi, M., Cranmer, S. R. & DeLuca, E. E. 2011 Heating of the solar chromosphere and corona by Alfvén wave turbulence. Astrophys. J. 736 (3), 127.Google Scholar
van Veen, L. & Kawahara, G. 2011 Homoclinic tangle on the edge of shear turbulence. Phys. Rev. Lett. 107, 114501.Google Scholar
Waleffe, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9, 883900.Google Scholar
Waleffe, F. 2003 Homotopy of exact coherent structures in plane shear flows. Phys. Fluids 15, 15171534.Google Scholar
Walker, J. & Boldyrev, S. 2017 Magnetorotational dynamo action in the shearing box. Mon. Not. R. Astron. Soc. 470, 26532658.Google Scholar
Walker, J., Lesur, G. & Boldyrev, S. 2016 On the nature of magnetic turbulence in rotating, shearing flows. Mon. Not. R. Astron. Soc. 457, L39L43.Google Scholar
Wang, J., Gibson, J. F. & Waleffe, F. 2007 Lower branch coherent states: transition and control. Phys. Rev. Lett. 98, 204501.Google Scholar
Willis, A. P. & Barenghi, C. F. 2002a A Taylor–Couette dynamo. Astron. Astrophys. 393, 339343.Google Scholar
Willis, A. P. & Barenghi, C. F. 2002b Hydromagnetic Taylor–Couette flow: numerical formulation and comparison with experiment. J. Fluid Mech. 463, 361375.Google Scholar
Yousef, T. A., Heinemann, T., Schekochihin, A. A., Kleeorin, N., Rogachevskii, I, Iskakov, A. B., Cowley, S. C. & McWilliams, J. C. 2008 Generation of magnetic field by combined action of turbulence and shear. Phys. Rev. Lett. 100, 184501.Google Scholar