Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-18T19:19:05.102Z Has data issue: false hasContentIssue false

A higher order theory for compressible turbulent boundary layers at moderately large Reynolds number

Published online by Cambridge University Press:  29 March 2006

Noor Afzal
Affiliation:
Department of Aeronautical Engineering, Indian Institute of Technology, Kanpur, India

Abstract

A higher order theory for two-dimensional turbulent boundary-layer flow of a compressible fluid past a plane wall is formulated, for moderately large values of the Reynolds number, by the method of matched asymptotic expansions. The parameters (γ − 1) M2 and the molecular Prandtl number are assumed to be of order unity. The analysis deals with the set of Reynolds equations of mean motion (which are underdetermined without an additional set of closure hypotheses) and assumes that the non-dimensional fluctuations in velocity, temperature and density are of order U*, (friction velocity divided by free-stream velocity a t some designation point), while fluctuations in pressure are of order U2*.The first-order results of the present study lead to asymptotic laws for velocity and temperature distributions which correspond to the law of the wall, logarithmic law and defect law, and also to skin friction and heat-transfer laws. It turns out that the first-order defect law depends upon the gradient of entropy and stagnation enthalpy and the law of the wall is independent of viscous dissipation. The second-order terms of the present work (accounting for mean convection due to turbulent mass flux, viscous dissipation in the inner flow and displacement effects in the outer flow) describe the necessary corrections to first-order terms due to low Reynolds number effects. In the overlap region the second-order results, for the law of the wall and the defect law, show bilogarithmic terms along with logarithmic terms.

Type
Research Article
Copyright
© 1973 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afzal, N. 1971 Ind. Inst. Tech. Kanpur Tech. Rep. AE 16. (To be published in Z. angew. Math. Phys.)
Afzal, N.Yajnik, K. 1971 Ind. Inst. Tech. Kanpur Tech. Rep. AE 10. (To be published in Z. angew. Math. Phys.)
Afzal, N.Yajnik, K. 1972 Ind. Inst. Tech. Kanpur Tech. Rep. AE 18.
Baronti, P. O.Libby, P.A. 1966 A.I.A.A. J. 4, 193.
Bradshaw, P. 1968 J. Roy. Aero. Soc. 72, 451.
Bradshaw, P.Ferriss, D. H. 1970 Nat. Phys. Lab. aero. Rep. no. 1325.
Bradshaw, P.Ferriss, D. H. 1971 J. Fluid Mech. 46, 83.
Bradshaw, P., Ferriss, D. H.Atwell, N. P. 1967 J. Fluid Mech. 28, 593.
Cebeci, T.Smith, A.M. O. 1970 J. Bas. Engng, 92, 523.
Coles, D. 1964 Phys. Fluids, 7, 1403.
Demetriades, A. 1968 Phys. Fluids, 11, 1841.
Donaldson, C. P.Rosenbaum, H. 1969 N.A.S.A. Special Paper, no. 216.
Gill, A. E. 1968 J. Math. Phys. 47, 437.
Glushko, G. S. 1965 Bull. Acad. Sci., U.S.S.R. (Mech. Ser.), 4, 13.
Green, J. E. 1968 J. Fluid Mech. 31, 753.
Head, M. R. 1958 Aero. Res. Counc. R. – M., no. 3152.
Herring, H. J.Mellor, G. L. 1969 N.A.S.A. Special Paper, no. 216.
Jeromin, L. O. F. 1969 Progress in Aerospace Science, vol. 11. Pergamon.
Kistler, A. L. 1959 Phys. Fluids, 2, 290.
Kistler, A. L.Chen, W. S. 1963 J. Fluid Mech. 16, 62.
Kline, S. J., Moffatt, H. K.Morkovin, M. V. 1969 J. Fluid Mech. 36, 481.
Kutateladze, S. S.Leont'EV, A. I. 1964 Turbulent Boundary Layers in Compressible Gases Academic.
Laufer, J. 1969 N.A.S.A. Special Paper, no. 216.
Lumley, J. L. 1970 J. Fluid Mech. 41, 434.
Millikan, C. B. 1939 Proc. of 5th Int. Congr. Appl. Mech. (ed. J. P. Den HartogH. Peters). Wiley.
Morkovin, M. V. 1964 Mechanics of Turbulence (ed. A. Favre), p. 367. Gordon and Breach.
Narasimha, R. 1969 Curr. Sci. 20, 87.
Phillips, O. M. 1969 Ann. Rev. Elluid Mech. 1, 245.
Rotta, J. C. 1960 Agard Rep. no. 281.
Rotta, J. C. 1962 Progress in Aeronautical Sciences, vol. 2. Pergamon.
Rotta, J. C. 1964 Int. J. Heat Mass Transfer, 7, 215.
Rotta, J. C. 1967 Phys. Fluids, 10 (suppl.), S 179.
Schlichtinc, H. 1968 Boundary-Layer Theory, 6th edn. McGraw-Hill.
Simpson, R. L. 1970 J. Fluid Mech. 42, 769.
Van Dyke, M. 1962a J. Fluid Mech. 14, 161177.
Van Dyke, M. 1962b Hypersonic Flow Research (ed. F. R. Fiddell), p. 37. Academic.
Van Dyke, M. 1964 Perturbation Methods in Fluid Mechanics. Academic.
Wallace, J. E. 1969 N.A.S.A. Special Paper, no. 216.
Winter, K. G.Gaudet, L. 1969 N.A.S.A. Special Paper, no. 216.
Yajnik, K. 1970 J. Fluid Mech. 42, 411.