Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-18T19:20:04.504Z Has data issue: false hasContentIssue false

Higher eigenstates in boundary-layer stability theory

Published online by Cambridge University Press:  11 April 2006

D. Corner
Affiliation:
Physics Department, University of Edinburgh, Scotland
D. J. R. Houston
Affiliation:
Physics Department, University of Edinburgh, Scotland
M. A. S. Ross
Affiliation:
Physics Department, University of Edinburgh, Scotland

Abstract

Using the Orr-Sommerfeld equation with the wavenumber as the eigenvalue, a search for higher eigenstates in the stability theory of the Blasius boundary layer has revealed the existence of a number of viscous states in addition to the long established fundamental state. The viscous states are discrete, belong to two series, and are all heavily damped in space. Within the limits of the investigation the number of viscous states existing in the layer increases as the Reynolds number and the angular frequency of the perturbation increase. It is suggested that the viscous eigenstates may be responsible for the excitation of some boundary-layer disturbances by disturbances in the free stream.

Type
Research Article
Copyright
© 1976 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barry, M. D. J. & Ross, M. A. S. 1970 J. Fluid Mech. 43, 813.
Bouthier, M. 1972 J. Méc. 11, 599
Bouthier, M. 1973 J. Méc. 12, 75.
Brillouin, L. 1946 Wave Propagation in Periodic Structures, chap. 5. McGraw-Hill.
Gaster, M. 1974 J. Fluid Mech. 66, 465.
Jeffreys, H. & Jeffreys, B. S. 1966 Methods of Mathematical Physics, pp. 511515. Cambridge University Press.
Jordinson, R. 1971 Phys. Fluids, 14, 2535.
Klebanoff, P. S., Tidstrom, K. D. & Saroent, L. M. 1962 J. Fluid Mech. 12, 1.
Kovasznay, L. S. G., Komoda, H. & Vasudeva, B. R. 1962 Proc. Heat Transfer Fluid Mech. Inst., p. 1. Stanford University Press.
Lin, C. C. 1944 Quart. Appl. Math. 3, 117, § 4(b).
Lin, C. C. 1955 The Theory of HydrodynamicStability, chap. 8. Cambridge University Press.
Mack, L. M. 1976 J. Fluid Mech. 73, 497.
Morawetz, C. S. 1952 J. Rat. Mech. Anal. 1, 579.
Ross, M. A. S. & Corner, D. F. 1972 Proc. Roy. SOC. Edin. 70, 251.
Schensted, I. V. 1961 Contributions to the theory of hydrodynamic stability. Ph.D. thesis, University of Michigan.
Schubauer, G. B. 1958 In Proc. Symp. Boundary Layer Res., Int. Un. Theoret. Appl. Mech., Freuburg, p. 85
Schubauer, G. B. & Klebanoff, P. S. 1955 Nat. Advis. Comm. Aero. Wash. Rep. no. 1289.
Scwbauer, G. B. & Skramstad, H. K. 1947 J. Res. Nat. Bur. Stand. 38, 261.
Wasow, W. 1948 Ann. Math. 49, 852.
Wasow, W. 1950 Ann. Math. 52, 350.
Wasow, W. 1953 Ann. Math. 58, 222.