Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T17:08:39.620Z Has data issue: false hasContentIssue false

Heat transport by laminar boundary layer flow with polymers

Published online by Cambridge University Press:  28 February 2012

Roberto Benzi
Affiliation:
Dipartimento di Fisica and INFN, Università ‘Tor Vergata’, Via della Ricerca Scientifica 1, I-00133 Roma, Italy
Emily S. C. Ching*
Affiliation:
Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong Institute of Theoretical Physics, The Chinese University of Hong Kong, Shatin, Hong Kong
Vivien W. S. Chu
Affiliation:
Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong
*
Email address for correspondence: [email protected]

Abstract

Motivated by recent experimental observations, we consider a steady-state boundary layer flow with polymers in forced convection above a heated plate and study how the heat transport might be affected by the polymers. We discuss how a set of equations can be derived for the problem and how these equations can be solved numerically by an iterative scheme. By carrying out such a scheme, we find that the effect of the polymers is equivalent to producing a space-dependent effective viscosity that first increases from the zero-shear value at the plate then decreases rapidly back to the zero-shear value far from the plate. We further show that such an effective viscosity leads to a decrease in the streamwise velocity near the plate, which in turn leads to a reduction in heat transport.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ahlers, G., Brown, E., Fontenele, A., Funfschilling, D., Grossmann, S. & Lohse, D. 2006 Non-Oberbeck-Boussinesq effects in strongly turbulent Rayleigh–Bénard convection. J. Fluid Mech. 569, 409445.CrossRefGoogle Scholar
2. Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection. Rev. Mod. Phys. 81, 503537.CrossRefGoogle Scholar
3. Ahlers, G. & Nikolaenko, A. 2010 Effect of a polymer additive on heat transport in turbulent Rayleigh-Bénard convection. Phys. Rev. Lett. 104, 034503.CrossRefGoogle ScholarPubMed
4. Bataller, R. C. 2008 Similarity solutions for boundary layer flow and heat transfer of a FENE-P fluid with thermal radiation. Phys. Lett. A 372, 24312439.CrossRefGoogle Scholar
5. Bird, R. B., Hassager, O., Armstrong, R. C. & Curtis, C. F. 1987 Dynamics of Polymeric Liquids. Wiley-Interscience.Google Scholar
6. Celani, A., Puliafito, A. & Vincenzi, D. 2006 Dynamical slowdown of polymers in laminar and random flows. Phys. Rev. Lett. 97, 118301.CrossRefGoogle ScholarPubMed
7. Cebeci, T. 2002 Convective Heat Transfer. Springer.CrossRefGoogle Scholar
8. Doyle, P. S., Shaqfeh, E. S. G., Mckinley, G. H. & Spiegelberg, S. H. 1998 Relaxation of dilute polymer solutions following extensional flow. J. Non-Newtonian Fluid Mech. 76, 79110.CrossRefGoogle Scholar
9. Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.CrossRefGoogle Scholar
10. James, D. F. & Acosta, A. J. 1970 The laminar flow of dilute polymer solutions around circular cylinders. J. Fluid Mech. 42, 269288.CrossRefGoogle Scholar
11. Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics. Pergamon.Google Scholar
12. Larson, R. G., Perkins, T. T., Smith, D. E. & Chu, S. 1997 Hydrodynamics of a DNA molecule in a flow field. Phys. Rev. E 55, 17941797.CrossRefGoogle Scholar
13. Olagunju, D. O. 2006 A self-similar solution for forced convection boundary layer flow of a FENE-P fluid. App. Math. Lett. 19, 432436.CrossRefGoogle Scholar
14. Procaccia, I., L’vov, V. S. & Benzi, R. 2008 Theory of drag reduction by polymers in wall-bounded turbulence. Rev. Mod. Phys. 80, 225247.CrossRefGoogle Scholar
15. Siggia, E. D. 1994 High Rayleigh-number convection. Annu. Rev. Fluid Mech. 26, 137168.CrossRefGoogle Scholar
16. Sreenivasan, K. R. & White, C. M. 2000 The onset of drag reduction by dilute polymer additives, and the maximum drag reduction asymptote. J. Fluid Mech. 409, 149164.CrossRefGoogle Scholar
17. Schlichting, H. & Gersten, K. 2004 Boundary-Layer Theory, 8th edn. Springer.Google Scholar
18. Zhou, Q., Stevens, R. J. A. M., Sugiyama, K., Grossmann, S., Lohse, D. & Xia, K.-Q. 2010 Prandtl-Blasius temperature and velocity boundary layer profiles in turbulent Rayleigh-Bénard convection. J. Fluid Mech. 664, 297312.CrossRefGoogle Scholar