Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-22T12:11:44.643Z Has data issue: false hasContentIssue false

Growth of a fluid-infused patch from droplet drainage into a thin porous layer

Published online by Cambridge University Press:  17 August 2022

Zhong Zheng*
Affiliation:
State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China MOE Key Laboratory of Hydrodynamics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
*
Email address for correspondence: [email protected], [email protected]

Abstract

Growth of a fluid-infused patch on a thin porous layer, e.g. on a piece of paper or cloth, is related to the transmission of virus particles through exhaled droplets and aerosols. We present a theoretical model to describe how a wet patch develops gradually through imbibition, once a sessile droplet attaches at a permeable surface and drains gradually into a thin porous layer. Two limiting cases are considered based on different assumptions on the motion of the contact line during the coupled process of drop drainage and patch growth: (i) the apparent contact angle remains unchanged, so the radius of a sessile droplet decreases with time; and (ii) the location of the contact line remains pinned, so the contact angle decreases as time progresses. The model leads to evolution pathways for both the droplet and the fluid film within the porous layer, without introducing arbitrary fitting parameters. Potential implications of the model and its solutions are also discussed briefly in the context of the outspread of COVID-19, employing physical parameters for exhaled droplets, paper and cloth.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acton, J.M., Huppert, H.E. & Worster, M.G. 2001 Two-dimensional viscous gravity currents flowing over a deep porous medium. J. Fluid Mech. 440, 359380.CrossRefGoogle Scholar
Alleborn, N. & Raszillier, H. 2004 Spreading and sorption of a droplet on a porous substrate. Chem. Engng Sci. 59, 20712088.CrossRefGoogle Scholar
Bear, J. 1988 Dynamics of Fluids in Porous Media. Courier Corporation.Google Scholar
Bell, J.M. & Cameron, F.K. 1906 The flow of liquids through capillary spaces. J. Phys. Chem. 10, 658674.CrossRefGoogle Scholar
Bhagat, R.K., Wykes, M.S., Davies, D., Stuart, B. & Linden, P.F. 2020 Effects of ventilation on the indoor spread of COVID-19. J. Fluid Mech. 903, F1.CrossRefGoogle ScholarPubMed
Boulogne, F., Ingremeau, F. & Stone, H.A. 2016 Coffee-stain growth dynamics on dry and wet surfaces. J. Phys.: Condens. Matter 29, 074001.Google ScholarPubMed
Bourouiba, L. 2021 The fluid dynamics of disease transmission. Annu. Rev. Fluid Mech. 53, 473508.CrossRefGoogle Scholar
Bourouiba, L., Dehandschoewercker, E. & Bush, J.W.M. 2014 Violent respiratory events: on coughing and sneezing. J. Fluid Mech. 745, 537563.CrossRefGoogle Scholar
Buckley, S.E. & Leverett, M.C. 1942 Mechanism of fluid displacement in sands. Trans. AIME 146, 107116.CrossRefGoogle Scholar
Chase, D.L., Lai, C.Y. & Stone, H.A. 2021 Relaxation of a fluid-filled blister on a porous substrate. Phys. Rev. Fluids 6, 084101.CrossRefGoogle Scholar
Chen, A. 2013 A journey to the past with ‘oracle bone script paintings’ and ‘characters paintings’. Bachelor thesis, Wesleyan University.Google Scholar
Courbin, L., Denieul, E., Dressaire, E., Roper, M., Ajdari, A. & Stone, H.A. 2007 Imbibition by polygonal spreading on microdecorated surfaces. Nat. Mater. 6, 661664.CrossRefGoogle ScholarPubMed
Duffy, B.R. & Wilson, S.K. 1996 A third-order differential equation arising in thin-film flows and relevant to Tanner's law. Appl. Maths Lett. 10, 6368.CrossRefGoogle Scholar
Duguid, J.P. 1946 The size and the duration of air-carriage of respiratory droplets and droplet-nuclei. J. Hyg. (Lond.) 44, 471479.Google ScholarPubMed
Eggers, J. & Fontelos, M.A. 2009 The role of self-similarity in singularities of partial differential equations. Nonlinearity 22, R1R44.CrossRefGoogle Scholar
Elizalde, E., Urteaga, R. & Berli, C.L.A. 2015 Rational design of capillary-driven flows for paper-based microfluidics. Lab on a Chip 15, 21732180.CrossRefGoogle ScholarPubMed
Espin, L. & Kumar, S. 2015 Droplet spreading and adsorption on rough, permeable substrates. J. Fluid Mech. 784, 465486.CrossRefGoogle Scholar
FisherScientific 2011 Filter papers for the laboratory and industry. Sartorius Stedim Biotech.Google Scholar
de Gennes, P.G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827863.CrossRefGoogle Scholar
Golding, M.J., Neufeld, J.A., Hesse, M.A. & Huppert, H.E. 2011 Two-phase gravity currents in porous media. J. Fluid Mech. 678, 248270.CrossRefGoogle Scholar
Hertaeg, M.J., Tabor, R.F., Berry, J.D. & Garnier, G. 2020 Radial wicking of biological fluids in paper. Langmuir 36, 82098217.CrossRefGoogle ScholarPubMed
Huh, C. & Scriven, L.E. 1971 Hydrodynamics model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35, 85101.CrossRefGoogle Scholar
Hultmark, M., Aristoff, J. & Stone, H.A. 2011 The influence of the gas phase on liquid imbibition in capillary tubes. J. Fluid Mech. 678, 670–606.CrossRefGoogle Scholar
Joung, Y.S. & Buie, C.R. 2015 Aerosol generation by raindrop impact on soil. Nat. Commun. 6, 6083.CrossRefGoogle Scholar
Kiradjiev, K.B., Breward, C.J.W. & Griffiths, I.M. 2019 Surface-tension- and injection-driven thin-film flow. J Fluid Mech. 861, 765795.CrossRefGoogle Scholar
Kolinski, J.M., Rubinstein, S.M., Mandre, S., Brenner, M.P., Weitz, D.A. & Mahadevan, L. 2012 Skating on a film of air: drops impacting on a surface. Phys. Rev. Lett. 108, 074503.CrossRefGoogle ScholarPubMed
Kumar, S.M. & Deshpande, A.P. 2006 Dynamics of drop spreading on fibrous porous media. Colloids Surf. A 277, 157163.CrossRefGoogle Scholar
Lai, C.Y., Stevens, L.A., Chase, D.L., Creyts, T.T., Behn, M.D., Das, S.B. & Stone, H.A. 2021 Hydraulic transmissivity inferred from ice-sheet relaxation following Greenland supraglacial lake drainages. Nat. Commun. 12, 3955.CrossRefGoogle ScholarPubMed
Lai, C.Y., Zheng, Z., Dressaire, E., Ramon, G., Huppert, H.E. & Stone, H.A. 2016 Elastic relaxation of fluid-driven cracks and the resulting backflow. Phys. Rev. Lett. 117, 268001.CrossRefGoogle ScholarPubMed
Liu, Y., Zheng, Z. & Stone, H.A. 2017 The influence of capillary effects on the drainage of a viscous gravity current into a deep porous medium. J. Fluid Mech. 817, 514559.CrossRefGoogle Scholar
Marmur, A. 1988 The radial capillary. J. Colloid Interface Sci. 124, 301308.CrossRefGoogle Scholar
Martinez, A.W., Phillips, S.T., Whitesides, G.M. & Carrilho, E. 2010 Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal. Chem. 82, 310.CrossRefGoogle ScholarPubMed
Stadnytskyi, V., Bax, C.E., Bax, A. & Anfinrud, O. 2020 The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. Proc. Natl Acad. Sci. USA 117, 1187511877.CrossRefGoogle ScholarPubMed
Starov, V.M., Kostvintsev, S.R., Sobolev, V.D., Velarde, M.G. & Zhdanov, S.A. 2002 Spreading of liquid drops over dry porous layers: complete wetting case. J. Colloid Interface Sci. 252, 397408.CrossRefGoogle ScholarPubMed
van der Veen, R.C.A., Hendrix, M.H.W., Tran, T., Sun, C., Tsai, P.A. & Lohse, D. 2014 How microstructures affect air film dynamics prior to drop impact. Soft Matt. 10, 37033707.CrossRefGoogle ScholarPubMed
Washburn, E.W. 1921 The dynamics of capillary flow. Phys. Rev. 17, 273283.CrossRefGoogle Scholar
Wemp, C.K. & Carey, V.P. 2017 Water wicking and droplet spreading on randomly structured thin nanolayers. Langmuir 33, 1451314525.CrossRefGoogle Scholar
Xiao, J., Stone, H.A. & Attinger, D. 2012 Source-like solution for radial imbibition into a homogeneous semi-infinite porous medium. Langmuir 28, 42084212.CrossRefGoogle ScholarPubMed
Yang, F., Pahlavan, A.A., Mendez, S., Abkarian, M. & Stone, H.A. 2020 Towards improved social distancing guidelines: space and time dependence of virus transmission from speech-driven aerosol transport between two individuals. Phys. Rev. Fluids 5, 122501.CrossRefGoogle Scholar
Zheng, Z., Fontelos, M.A., Shin, S., Dallaston, M.C., Tseluiko, D., Kalliadasis, S. & Stone, H.A. 2018 Healing capillary films. J. Fluid Mech. 838, 404434.CrossRefGoogle Scholar
Zheng, Z. & Neufeld, J.A. 2019 Self-similar dynamics of two-phase flows injected into a confined porous layer. J. Fluid Mech. 877, 882921.CrossRefGoogle Scholar
Zheng, Z. & Stone, H.A. 2022 The influence of boundaries on gravity currents and thin films: drainage, confinement, convergence, and deformation effects. Annu. Rev. Fluid Mech. 54, 2756.CrossRefGoogle Scholar
Zhou, M., Care, S., King, A., Courtier-Murias, D., Rodts, S., Gerber, G., Aimedieu, P., Bonnet, M., Bornert, M. & Courssot, P. 2019 Wetting enhanced by water adsorption in hygroscopic plantlike materials. Phys. Rev. Res. 1, 033190.CrossRefGoogle Scholar