Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T20:33:30.807Z Has data issue: false hasContentIssue false

Granular surface avalanching induced by drainage from a narrow silo

Published online by Cambridge University Press:  04 October 2018

C.-Y. Hung
Affiliation:
Department of Soil and Water Conservation, National Chung-Hsing University, Taichung 402, Taiwan
P. Aussillous
Affiliation:
Aix-Marseille University, CNRS, IUSTI, 13453 Marseille, France
H. Capart*
Affiliation:
Department of Civil Engineering and Hydrotech Research Institute, National Taiwan University, Taipei 106, Taiwan
*
Email address for correspondence: [email protected]

Abstract

Using theory and experiments, we investigate granular surface avalanching due to material outflow from a narrow silo. The assumed silo geometry is a deep rectangular box, of moderate spanwise width and small gap thickness between smooth front and back walls. A small orifice deep below the free surface lets grains drain out at a constant rate. The resulting granular flows can therefore be assumed quasi-two-dimensional and quasi-steady over most of the surface descent history. To model these flows, we couple a kinematic model of deep granular flow with a dynamic model of shallow surface avalanching. We then compare the calculated flow fields with detailed particle tracking measurements, letting the silo ascend relative to the high-speed camera to increase spatial resolution. The results show that the avalanching surface shape and near-surface flow are controlled by the spanwise gradient in subsidence velocity, and how this gradient is in turn controlled by the height above orifice and the gap thickness. Whereas the deep flow pattern is rate independent, shallow avalanching is paced by the granular rheology.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balevičius, R., Kačianauskas, R., Mróz, Z. & Sielamowicz, I. 2011 Analysis and DEM simulation of granular material flow patterns in hopper models of different shapes. Adv. Powder Technol. 22, 226235.Google Scholar
Benyamine, M., Djermane, M., Dalloz-Dubrujeaud, B. & Aussillous, P. 2014 Discharge flow of a bidisperse granular media from a silo. Phys. Rev. E 90, 032201.Google Scholar
Berzi, D. & Jenkins, J. T. 2008 A theoretical analysis of free-surface flows of saturated granular-liquid mixtures. J. Fluid Mech. 608, 393410.Google Scholar
Capart, H., Hung, C.-Y. & Stark, C. P. 2015 Depth-integrated equations for entraining granular flows in narrow channels. J. Fluid Mech. 765, R4.Google Scholar
Capart, H., Young, D. L. & Zech, Y. 2002 Voronoï imaging methods for the measurement of granular flows. Exp. Fluids 32, 121135.Google Scholar
Caram, H. & Hong, D. C. 1991 Random-walk approach to granular flows. Phys. Rev. Lett. 67, 828831.Google Scholar
Choi, J., Kudrolli, A. & Bazant, M. Z. 2005 Velocity profile of granular flows inside silos and hoppers. J. Phys.: Condens. Matter 17, S2533S2548.Google Scholar
Chou, H. T., Lee, C. F., Chung, Y. C. & Hsiau, S. S. 2012 Discrete element modelling and experimental validation for the falling process of dry granular steps. Powder Technol. 231, 122134.Google Scholar
Cleary, P. W. & Sawley, M. L. 2002 DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge. Appl. Math. Model. 26, 89111.Google Scholar
da Cruz, F., Emam, S., Prochnow, M., Roux, J. N. & Chevoir, F. 2005 Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72, 021309.Google Scholar
Daviet, G. & Bertails-Descoubes, F. 2016 Nonsmooth simulation of dense granular flows with pressure-dependent yield stress. J. Non-Newtonian Fluid Mech. 234, 1535.Google Scholar
Dunatunga, S. & Kamrin, K. 2015 Continuum modelling and simulation of granular flows through their many phases. J. Fluid Mech. 779, 483513.Google Scholar
Edwards, A. N. & Gray, J. M. N. T. 2015 Erosion-deposition waves in shallow granular free-surface flows. J. Fluid Mech. 762, 3567.Google Scholar
Fan, Y., Umbanhowar, P. B., Ottino, J. M. & Lueptow, R. M. 2013 Kinematics of monodisperse and bidisperse granular flows in quasi-two-dimensional bounded heaps. Proc. R. Soc. Lond. A 469, 20130235.Google Scholar
Fernández-Nieto, E. D., Garres-Díaz, J., Mangeney, A. & Narbona-Reina, G. 2018 2D granular flows with the 𝜇(I) rheology and side walls friction: a well-balanced multilayer discretization. J. Comput. Phys. 356, 192219.Google Scholar
Gray, J. M. N. T. 2001 Granular flow in partially filled slowly rotating drums. J. Fluid Mech. 441, 129.Google Scholar
Gray, J. M. N. T. & Edwards, A. N. 2014 A depth-averaged 𝜇(I)-rheology for shallow granular free-surface flows. J. Fluid Mech. 755, 503534.Google Scholar
Gray, J. M. N. T. & Hutter, K. 1997 Pattern formation in granular avalanches. Contin. Mech. Thermodyn. 9, 341345.Google Scholar
Hung, C.-Y., Stark, C. P. & Capart, H. 2016 Granular flow regimes in rotating drums from depth-integrated theory. Phys. Rev. E 93, 030902(R).Google Scholar
Ionescu, I., Mangeney, A., Bouchut, F. & Roche, O. 2015 Viscoplastic modelling of granular column collapse with pressure-dependent rheology. J. Non-Newtonian Fluid Mech. 219, 118.Google Scholar
Jop, P., Forterre, Y. & Pouliquen, O. 2005 Crucial role of sidewalls in granular surface flows: consequences for the rheology. J. Fluid Mech. 541, 167192.Google Scholar
Jop, P., Forterre, Y. & Pouliquen, O. 2007 Initiation of granular surface flows in a narrow channel. Phys. Fluids 19, 088102.Google Scholar
Kevorkian, J. 1990 Partial Differential Equations. Analytical Solutions Techniques. Wadsworth and Brooks/Cole.Google Scholar
Khakhar, D. V., Orpe, A. V., Andresén, P. & Ottino, J. M. 2001 Surface flow of granular materials: model and experiments in heap formation. J. Fluid Mech. 441, 225264.Google Scholar
Lee, C.-H., Huang, Z. & Chiew, Y.-M. 2015 A three-dimensional continuum model incorporating static and kinetic effects for granular flows with applications to collapse of a two-dimensional granular column. Phys. Fluids 27, 113303.Google Scholar
Liggett, J. A. 1994 Fluid Mechanics. McGraw-Hill.Google Scholar
Litwiniszyn, J. 1963 The model of a random walk of particles adapted to researches on problems of mechanics of loose media. Bull. Acad. Pol. Sc. Ser. Tech. 11, 6170.Google Scholar
Lusso, C., Bouchut, F., Ern, A. & Mangeney, A. 2017 A free interface model for static/flowing dynamics in thin-layer flows of granular materials with yield: simple shear simulations and comparison with experiments. Appl. Sci. 7, 386.Google Scholar
Maiti, R., Das, G. & Das, P. K. 2016 Experiments on eccentric granular discharge from a quasi-two-dimensional silo. Powder Technol. 301, 10541066.Google Scholar
Nedderman, R. M. & Tüzün, U. 1979 A kinematic model for the flow of granular materials. Powder Technol. 22, 243253.Google Scholar
Ni, W.-J. & Capart, H. 2006 Groundwater drainage and recharge by networks of irregular channels. J. Geophys. Res. 111, F02014.Google Scholar
Parez, S., Aharonov, E. & Toussaint, R. 2016 Unsteady granular flows down an inclined plane. Phys. Rev. E 93, 042902.Google Scholar
Pouliquen, O. & Forterre, Y. 2002 Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J. Fluid Mech. 453, 133151.Google Scholar
Rajchenbach, J. 1990 Flow in powders: from discrete avalanches to continuous regime. Phys. Rev. Lett. 65, 22212224.Google Scholar
Rycroft, C. H., Grest, G. S., Landry, J. W. & Bazant, M. Z. 2006 Analysis of granular flow in a pebble-bed nuclear reactor. Phys. Rev. E 74, 021306.Google Scholar
Samadani, A., Mahadevan, L. & Kudrolli, A. 2002 Shocks in sand flowing in a silo. J. Fluid Mech. 452, 293301.Google Scholar
Sarno, L., Carleo, L., Papa, M. N. & Villani, P. 2018 Experimental investigation on the effects of the fixed boundaries in channelized dry granular flows. Rock Mech. Rock Engng 51, 203225.Google Scholar
Staron, L., Lagrée, P.-Y. & Popinet, S. 2014 Continuum simulation of the discharge of the granular silo. A validation test for the 𝜇(I) visco-plastic flow law. Eur. Phys. J. E 37, 5.Google Scholar
Tüzün, U., Houlsby, G. T., Nedderman, R. M. & Savage, S. B. 1982 The flow of granular materials-II. velocity distributions in slow flow. Chem. Engng Sci. 37, 16911709.Google Scholar
Vivanco, F. & Melo, F. 2013 The effect of rock decompaction on the interaction of movement zones in underground mining. Intl J. Rock Mech. Mining Sci. 60, 381388.Google Scholar
Zhou, Y., Lagrée, P.-Y, Popinet, S., Ruyer, P. & Aussillous, P. 2017 Experiments on, and discrete and continuous simulations of, the discharge of granular media from silos with a lateral orifice. J. Fluid Mech. 829, 459485.Google Scholar
Zhou, Y., Ruyer, P. & Aussillous, P. 2015 Discharge flow of a bidisperse granular media from a silo: discrete particle simulations. Phys. Rev. E 92, 062204.Google Scholar