Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-08T22:04:25.320Z Has data issue: false hasContentIssue false

Global stability of the two-dimensional flow over a backward-facing step

Published online by Cambridge University Press:  03 November 2011

Daniel Lanzerstorfer
Affiliation:
Institute of Fluid Mechanics and Heat Transfer, Vienna University of Technology, Resselgasse 3, A-1040 Vienna, Austria
Hendrik C. Kuhlmann*
Affiliation:
Institute of Fluid Mechanics and Heat Transfer, Vienna University of Technology, Resselgasse 3, A-1040 Vienna, Austria
*
Email address for correspondence: [email protected]

Abstract

The two-dimensional, incompressible flow over a backward-facing step is considered for a systematic variation of the geometry covering expansion ratios (step to outlet height) from 0.25 to 0.975. A global temporal linear stability analysis shows that the basic flow becomes unstable to different three-dimensional modes depending on the expansion ratio. All critical modes are essentially confined to the region behind the step extending downstream up to the reattachment point of the separated eddy. An energy-transfer analysis is applied to understand the physical nature of the instabilities. If scaled appropriately, the critical Reynolds number approaches a finite asymptotic value for very large step heights. In that case centrifugal forces destabilize the flow with respect to an oscillatory critical mode. For moderately large expansion ratios an elliptical instability mechanism is identified. If the step height is further decreased the critical mode changes from oscillatory to stationary. In addition to the elliptical mechanism, the strong shear in the layer emanating from the sharp corner of the step supports the amplification process of the critical mode. For very small step heights the basic state becomes unstable due to the lift-up mechanism, which feeds back on itself via the recirculating eddy behind the step, resulting in a steady critical mode comprising pronounced slow and fast streaks.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Albensoeder, S., Kuhlmann, H. C. & Rath, H. J. 2001 Three-dimensional centrifugal-flow instabilities in the lid-driven cavity problem. Phys. Fluids 13, 121135.CrossRefGoogle Scholar
2. Armaly, B. F., Durst, F., Pereira, J. C. F. & Schönung, B. 1983 Experimental and theoretical investigation of backward-facing step flow. J. Fluid Mech. 127, 473496.CrossRefGoogle Scholar
3. Barkley, D., Gomes, M. G. M. & Henderson, R. D. 2002 Three-dimensional instability in flow over a backward-facing step. J. Fluid Mech. 473, 167190.CrossRefGoogle Scholar
4. Bayly, B. J. 1986 Three-dimensional instability of elliptical flow. Phys. Rev. Lett. 57, 21602163.CrossRefGoogle ScholarPubMed
5. Bayly, B. J. 1988 Three-dimensional centrifugal-type instabilities in inviscid two-dimensional flows. Phys. Fluids 31, 5664.CrossRefGoogle Scholar
6. Beaudoin, J.-F., Cadot, O., Aider, J.-L. & Wesfreid, J. E. 2004 Three-dimensional stationary flow over a backward-facing step. Eur. J. Mech. (B/Fluids) 23, 147155.CrossRefGoogle Scholar
7. Blackburn, H. M., Barkley, D. & Sherwin, S. J. 2008 Convective instability and transient growth in flow over a backward-facing step. J. Fluid Mech. 603, 271304.CrossRefGoogle Scholar
8. Blackwell, B. F. & Pepper, D. W. 1992, Benchmark problems for heat transfer codes. In Winter Annual Meeting of the American Society of Mechanical Engineers, vol. 222. HTD , ASME.Google Scholar
9. Brent, R. P. 1973 Algorithms for Minimization without Derivatives. Prentice-Hall.Google Scholar
10. Chun, D. H. & Schwarz, W. H. 1967 Stability of the plane incompressible viscous wall jet subjected to small disturbances. Phys. Fluids 10, 911915.CrossRefGoogle Scholar
11. Cruchaga, M. A. 1998 A study of the backward-facing step problem using a generalized streamline formulation. Commun. Numer. Meth. Engng 14, 697708.3.0.CO;2-0>CrossRefGoogle Scholar
12. Eloy, C. & Le Dizès, S. 2001 Stability of the Rankine vortex in a multipolar strain field. Phys. Fluids 13, 660676.CrossRefGoogle Scholar
13. Erturk, E. 2008 Numerical solutions of 2-D steady incompressible flow over a backward-facing step, Part I: high Reynolds number solutions. Comput. Fluids 37, 633655.CrossRefGoogle Scholar
14. Ferziger, J. H. & Perić, M. 2002 Computational Methods for Fluid Dynamics. Springer.CrossRefGoogle Scholar
15. Fortin, A., Jardak, M., Gervais, J. J. & Pierre, R. 1997 Localization of Hopf bifurcations in fluid flow problems. Intl J. Numer. Meth. Fluids 24, 11851210.3.0.CO;2-X>CrossRefGoogle Scholar
16. Gartling, D. K. 1990 A test problem for outflow boundary conditions – flow over a backward-facing step. Intl J. Numer. Meth. Fluids 11, 953967.CrossRefGoogle Scholar
17. Ghia, K. N., Osswald, G. A. & Ghia, U. 1989 Analysis of incompressible massively separated viscous flows using unsteady Navier–Stokes equations. Intl J. Numer. Meth. Fluids 9, 10251050.CrossRefGoogle Scholar
18. Gresho, P. M. 1991 Incompressible fluid dynamics: some fundamental formulation issues. Annu. Rev. Fluid Mech. 23, 413453.CrossRefGoogle Scholar
19. Gresho, P. M., Gartling, D. K., Torczynski, J. R., Cliffe, K. A., Winters, K. H., Garratt, T. J., Spence, A. & Goodrich, J. W. 1993 Is the steady viscous incompressible two-dimensional flow over a backward-facing step at Re = 800 stable? Intl J. Numer. Meth. Fluids 17, 501541.CrossRefGoogle Scholar
20. Hawa, T. & Rusak, Z. 2002 Numerical-asymptotic expansion matching for computing a viscous flow around a sharp expansion corner. Theor. Comput. Fluid Dyn. 15, 265281.CrossRefGoogle Scholar
21. Howell, J. S. 2009 Computation of viscoelastic fluid flows using continuation methods. J. Comput. Appl. Math. 225, 187201.CrossRefGoogle Scholar
22. Kaiktsis, L., Karniadakis, G. E. & Orszag, S. A. 1991 Onset of three-dimensionality, equilibria and early transition in flow over a backward-facing step. J. Fluid Mech. 231, 501528.CrossRefGoogle Scholar
23. Kaiktsis, L., Karniadakis, G. E. & Orszag, S. A. 1996 Unsteadiness and convective instabilities in two-dimensional flow over a backward-facing step. J. Fluid Mech. 321, 157187.CrossRefGoogle Scholar
24. Kelley, C. T. 2003 Solving Nonlinear Equations with Newton’s Method. SIAM.CrossRefGoogle Scholar
25. Kerswell, R. R. 2002 Elliptical instability. Annu. Rev. Fluid Mech. 34, 83113.CrossRefGoogle Scholar
26. Kim, J. & Moin, P. 1985 Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59, 308323.CrossRefGoogle Scholar
27. Kuhlmann, H. C., Wanschura, M. & Rath, H. J. 1997 Flow in two-sided lid-driven cavities: non-uniqueness, instabilities, and cellular structures. J. Fluid Mech. 336, 267299.CrossRefGoogle Scholar
28. Landahl, M. T. 1975 Wave breakdown and turbulence. SIAM J. Appl. Math. 28 (4), 735756.CrossRefGoogle Scholar
29. Landahl, M. T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98 243251.CrossRefGoogle Scholar
30. Lee, T. & Mateescu, D. 1998 Experimental and numerical investigation of 2-D backward-facing step flow. J. Fluids Struct. 12, 703716.CrossRefGoogle Scholar
31. Lehoucq, R. B. & Scott, J. A. 1997 Implicitly restarted Arnoldi methods and eigenvalues of the discretized Navier–Stokes equations. SIAM J. Matrix Anal. Appl. 23, 551562.CrossRefGoogle Scholar
32. Mateescu, D. & Venditti, D. A. 2001 Unsteady confined viscous flows with oscillating walls and multiple separation regions over a downstream-facing step. J. Fluids Struct. 15, 11871205.CrossRefGoogle Scholar
33. Meerbergen, K., Spence, A. & Roose, D. 1994 Shift-invert and Cayley transforms for detection of eigenvalues with largest real part of nonsymmetric matrices. BIT Numerical Mathematics 34, 409423.CrossRefGoogle Scholar
34. Moffatt, H. K. 1964 Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18, 118.CrossRefGoogle Scholar
35. Orszag, S. A. 1971 Accurate solution of the Orr–Sommerfeld equation. J. Fluid Mech. 50 689703.CrossRefGoogle Scholar
36. Pierrehumbert, R. T. 1986 Universal short-wave instability of two-dimensional eddies in an inviscid fluid. Phys. Rev. Lett. 57, 21572159.CrossRefGoogle Scholar
37. Sipp, D. & Jacquin, L. 1998 Elliptic instability in two-dimensional flattened Taylor–Green vortices. Phys. Fluids 10, 839849.CrossRefGoogle Scholar
38. Sipp, D. & Jacquin, L. 2000 Three-dimensional centrifugal-type instabilities of two-dimensional flows in rotating systems. Phys. Fluids 12, 17401748.CrossRefGoogle Scholar
39. Sohn, J. L. 1988 Evaluation of FIDAP on some classical laminar and turbulent benchmarks. Intl J. Numer. Meth. Fluids 8, 14691490.CrossRefGoogle Scholar
40. Theofilis, V. 2000 Globally unstable basic flows in open cavities. AIAA Paper 2000-1965.Google Scholar
41. Theofilis, V. 2003 Advances in global linear instability analysis of nonparallel and three-dimensional flows. Prog. Aerosp. Sci. 39, 249315.CrossRefGoogle Scholar
42. Thomas, L. H. 1953 The stability of plane Poiseuille flow. Phys. Rev. 91 (4), 780783.CrossRefGoogle Scholar
43. Waleffe, F. 1990 On the three-dimensional instability of strained vortices. Phys. Fluids 2, 7680.CrossRefGoogle Scholar
44. Williams, P. T. & Baker, A. J. 1997 Numerical simulations of laminar flow over a 3D backward-facing step. Intl J. Numer. Meth. Fluids 24, 11591183.3.0.CO;2-R>CrossRefGoogle Scholar
45. Yanase, S., Kawahara, G. & Kiyama, H. 2001 Three-dimensional vortical structures of a backward-facing step flow at moderate Reynolds numbers. J. Phys. Soc. Japan 70, 35503555.CrossRefGoogle Scholar