Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T16:29:32.429Z Has data issue: false hasContentIssue false

Global linear stability analysis of weakly non-parallel shear flows

Published online by Cambridge University Press:  26 April 2006

Peter A. Monkewitz
Affiliation:
Department of Mechanical, Aerospace & Nuclear Engineering, University of California, Los Angeles, CA 90024-1597, USA
Patrick Huerre
Affiliation:
Laboratoire d'Hydrodynamique (LADHYX), Ecole Polytechnique, 91128 Palaiseau Cédex, France
Jean-Marc Chomaz
Affiliation:
Laboratoire d'Hydrodynamique (LADHYX), Ecole Polytechnique, 91128 Palaiseau Cédex, France

Abstract

The global linear stability of incompressible, two-dimensional shear flows is investigated under the assumptions that far-field pressure feedback between distant points in the flow field is negligible and that the basic flow is only weakly non-parallel, i.e. that its streamwise development is slow on the scale of a typical instability wavelength. This implies the general study of the temporal evolution of global modes, which are time-harmonic solutions of the linear disturbance equations, subject to homogeneous boundary conditions in all space directions. Flow domains of both doubly infinite and semi-infinite streamwise extent are considered and complete solutions are obtained within the framework of asymptotically matched WKBJ approximations. In both cases the global eigenfrequency is given, to leading order in the WKBJ parameter, by the absolute frequency ω0(Xt) at the dominant turning point Xt of the WKBJ approximation, while its quantization is provided by the connection of solutions across Xt. Within the context of the present analysis, global modes can therefore only become time-amplified or self-excited if the basic flow contains a region of absolute instability.

Type
Research Article
Copyright
© 1993 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions. Dover.Google Scholar
Basic, V. M. & Buldyrev, V. S. 1991 Short-Wavelength Diffraction Theory. Springer.Google Scholar
Bender, C. M. & Orszag, S. A. 1978 Advanced Mathematical Methods for Scientists and Engineers. McGraw Hill.Google Scholar
Bensimon, D., Pelcé, P. & Shraiman, B. I. 1987 Dynamics of curved fronts and pattern reflection. J. Phys. Paris 48, 20812082.CrossRefGoogle Scholar
Bers, A. 1983 Space-time evolution of plasma instabilities - absolute and convective. In Handbook of Plasma Physics (ed. M. N. Rosenbluth & R. Z. Sagdeev) vol. 1, pp. 451517. North-Holland.Google Scholar
Bouthier, M. 1972 Stabilité linéaire des écoulements prèsque parallèles. J. Méc. 4, 599621.Google Scholar
Briggs, R. J. 1964 Electron-Stream Interaction with Plasmas. MIT Press.Google Scholar
Buehler, K. 1991 Dynamical behavior of instabilities in spherical gap flows: theory and experiment. Eur. J. Mech. B Fluids, 10 (no. 2, Suppl.), 187192.
Burridge, R. & Weinberg, H. 1977 Horizontal rays and vertical modes. In Wave Propagation and Underwater Acoustics (ed. J. B. Keller & J. S. Papadakis). Lecture Notes in Physics, Vol. 70, pp. 86–150, Springer.Google Scholar
Chomaz, J.-M., Huerre, P. & Redekopp, L. G. 1988 bifurcation to local and global modes in spatially developing flows. Phys. Rev. Lett. 60, 2528.CrossRefGoogle Scholar
Chomaz, J.-M., Huerre, P. & Redekopp, L. G. 1990 Effect of nonlinearity and forcing on global modes; In Proc. Conf. on New Trends in Nonlinear Dynamics and Pattern-Forming Phenomena: The Geometry of Nonequilibrium (ed. P. Coullet & P. Huerre). NATO ASI Series B: Physics, Vol. 237, pp. 259274. Plenum.CrossRefGoogle Scholar
Chomaz, J.-M., Huerre, P. & Redekopp, L. G. 1991 A frequency selection criterion in spatially developing flows. Stud. Appl. Maths 84, 119144.CrossRefGoogle Scholar
Crighton, D. G. & Gaster, M. 1976 Stability of slowly diverging jet flow. J. Fluid Mech. 77, 397413.CrossRefGoogle Scholar
Fuchs, V., Ko, K. & Bers, A. 1981 Theory of mode conversion in weakly inhomogeneous plasma. Phys Fluids 24, 12511261.CrossRefGoogle Scholar
Gaster, M. 1968 Growth of disturbances in both space and time. Phys. Fluids 11, 723727.CrossRefGoogle Scholar
Hannemann, K. & Oertel, H. 1989 Numerical simulation of the absolutely and convectively unstable wake. J. Fluid Mech. 199, 5588.CrossRefGoogle Scholar
Ho, C. M. & Huerre, P. 1984 Perturbed free shear layers. Ann. Rev. Fluid Mech. 16, 365424.CrossRefGoogle Scholar
Huerre, P. & Monkewitz, P. A. 1985 Absolute and convective instabilities in free shear layers. J. Fluid Mech. 159, 151168.CrossRefGoogle Scholar
Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Ann. Rev. Fluid Mech. 22, 473537.CrossRefGoogle Scholar
Hunt, R. E. & Crighton, D. G. 1991 Instability of flows in spatially developing media. Proc. R. Soc. Land. A 435, 109129.CrossRefGoogle Scholar
Koch, W. 1985 Local instability characteristics and frequency determination of self-excited wake flows. J. Sound Vib. 99, 5383.CrossRefGoogle Scholar
Kravtsov, Yu. A. & Orlov, Yu. I. 1990 Geometrical Optics of Inhomogeneous Media. Springer.CrossRefGoogle Scholar
Landahl, M. T. 1984 The growth of instability waves in a slightly nonuniform medium. Proc. 2nd IUTAM Symp. on Laminar-Turbulent Transition, Novosibirsk. Springer.Google Scholar
LeDizés, S. 1990 Effets non-linéaires sur des écoulements faiblement divergents. 1 thesis, Université Paris VI.Google Scholar
Monkewitz, P. A. 1988 The absolute and convective nature of instability in two-dimensional wakes at low Reynolds numbers. Phys. Fluids 31, 9991006.CrossRefGoogle Scholar
Monkewitz, P. A. 1990 The role of absolute and convective instability in predicting the behavior of fluid systems. Eur. J. Mech. B/Fluids 9, 395413.Google Scholar
Monkewitz, P. A., Bechert, D. W., Lehmann, B. & Barsikow, B. 1990 Self-excited oscillations and mixing in heated round jets. J. Fluid Mech. 213, 611639.CrossRefGoogle Scholar
Monkewitz, P. A., Berger, E. & Schumm, M. 1991 The nonlinear stability of spatially inhomogeneous shear flows, including the effect of feedback. Eur. J. Mech. B/Fluids 10 (no. 2, Suppl.), 295300.Google Scholar
Monkewitz, P. A., Huerre, P. & Chomaz, J.-M. 1989 Global stability analysis of spatially developing flows with application to the jet-column mode. Bull. Am. Phys. Soc. 34, 2263.Google Scholar
Monkewitz, P. A. & Sohn, K. D. 1988 Absolute instability in hot jets. Absolute instability in hot jets AIAA J., 26911.Google Scholar
Papageorgiou, D. 1987 Stability of the unsteady viscous flow in a curved pipe. J. Fluid Mech. 182, 209233.CrossRefGoogle Scholar
Pierrehumbert, R. T. 1984 Local and global baroclinic instability of zonally varying flow. J. Atmos. Sci. 41, 21412162.2.0.CO;2>CrossRefGoogle Scholar
Soward, A. M. 1992 Thin disc kinematic αω-dynamo models II. Short length scale modes. Geophys. Astrophys. Fluid Dyn. 64, 201225.CrossRefGoogle Scholar
Soward, A. M. & Jones, C. A. 1983 The linear stability of the flow in the narrow gap between two concentric rotating spheres. Q. J. Appl. Maths 36, 1942.CrossRefGoogle Scholar
Sreenivasan, K. R., Raghu, S. & Kyle, D. 1989 Absolute instability in variable density round jets. Exps. Fluids 7, 309317.CrossRefGoogle Scholar
Strykowski, P. J. & Niccum, D. L. 1991 The stability of countercurrent mixing layers in circular jets. J. Fluid Mech. 227, 309343.CrossRefGoogle Scholar
Triantafyllou, G. S. & Karniadakis, G. E. 1990 Computational reducibility of unsteady viscous flows. Phys. Fluids A 2, 653656.CrossRefGoogle Scholar
Yu, M.-H. & Monkewitz, P. A. 1990 The effect of nonuniform density on the absolute instability of two-dimensional inertial jets and wakes. Phys. Fluids A 2, 11751181.CrossRefGoogle Scholar
Zebib, A. 1987 Stability of viscous flow past a circular cylinder. J. Engng Maths 21, 155165.CrossRefGoogle Scholar