Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-08T17:00:45.577Z Has data issue: false hasContentIssue false

Global instability analysis and experiments on buoyant plumes

Published online by Cambridge University Press:  26 October 2017

Kuchimanchi K. Bharadwaj
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
Debopam Das*
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
*
Email address for correspondence: [email protected]

Abstract

The present work investigates the puffing instability of circular buoyant plumes by performing global linear stability analysis and experiments. In the non-dimensional parameter space investigated, plumes exhibit global instability only for axisymmetric perturbations with two unstable modes, which are of oscillatory type. The frequencies of these two unstable global modes agree well with the experiments which suggest that puffing occurs in buoyant plumes as a result of linear global instability. A comprehensive investigation on the effect of various non-dimensional parameters and inlet velocity profiles on frequency and growth rates of the global modes is carried out. The results are used to delineate the stability boundaries for these global modes and to obtain scaling laws for the associated oscillation frequencies. The analysis demonstrates that the two buoyancy parameters, Froude number and source-to-ambient density ratio, play dominant roles in impacting plume transition and oscillation frequencies. Results from global linear stability analysis and earlier experiments have majorly differed in two aspects. The earlier experiments reported a switch in puffing frequency scaling in Richardson number range 100–500, while the instability analysis predicts this switch at around 6000. Also, the instability analysis predicts the occurrence of puffing at density ratios higher than the critical value 0.5–0.6 reported in earlier experiments. To address these differences and validate the results obtained from global linear stability analysis, experiments are performed in a set-up that has been carefully designed to minimize the settling chamber disturbances. The present experiments corroborate the findings of global linear stability analysis. The mechanisms responsible for global instability in plumes have been identified using perturbation vorticity transport equation.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. & Gill, A. E. 1962 Analysis of the stability of axisymmetric jets. J. Fluid Mech. 14 (04), 529551.Google Scholar
Cetegen, B. M. 1997 Behavior of naturally unstable and periodically forced axisymmetric buoyant plumes of helium and helium–air mixtures. Phys. Fluids 9 (12), 37423752.Google Scholar
Cetegen, B. M. 1998 A phenomenological model of near-field fire entrainment. Fire Safety J. 31 (4), 299312.Google Scholar
Cetegen, B. M. & Ahmed, T. A. 1993 Experiments on the periodic instability of buoyant plumes and pool fires. Combust. Flame 93 (1–2), 157184.Google Scholar
Cetegen, B. M. & Dong, Y. 2000 Experiments on the instability modes of buoyant diffusion flames and effects of ambient atmosphere on the instabilities. Exp. Fluids 28 (6), 546558.Google Scholar
Cetegen, B. M., Dong, Y. & Soteriou, M. C. 1998 Experiments on stability and oscillatory behavior of planar buoyant plumes. Phys. Fluids 10 (7), 16581665.Google Scholar
Cetegen, B. M. & Kasper, K. D. 1996 Experiments on the oscillatory behavior of buoyant plumes of helium and helium–air mixtures. Phys. Fluids 8 (11), 29742984.Google Scholar
Chakravarthy, R. V. K.2015 Local and global instabilities in buoyant jets and plumes. PhD thesis, Laboratoire dHydrodynamique (LadHyX), Ecole Polytechnique, Paris, France.Google Scholar
Chakravarthy, R. V. K., Lesshafft, L. & Huerre, P. 2015 Local linear stability of laminar axisymmetric plumes. J. Fluid Mech. 780, 344369.Google Scholar
Chakravarthy, R. V. K., Lesshafft, L. & Huerre, P. 2016 Effect of buoyancy on the instability of light jets and plumes. In Proceedings of the 5th International Conference on Jets, Wakes and Separated Flows (ICJWSF2015) (ed. Segalini, A.), pp. 6167. Springer.Google Scholar
Chandler, G. J., Juniper, M. P., Nichols, J. W. & Schmid, P. J. 2012 Adjoint algorithms for the Navier–Stokes equations in the low Mach number limit. J. Comput. Phys. 231 (4), 19001916.Google Scholar
Coenen, W. & Sevilla, A. 2012 The structure of the absolutely unstable regions in the near field of low-density jets. J. Fluid Mech. 713, 123149.Google Scholar
Coenen, W., Sevilla, A. & Sánchez, A. L. 2008 Absolute instability of light jets emerging from circular injector tubes. Phys. Fluids 20 (7), 074104.Google Scholar
FluentANSYS 2013 Release 15.0 theory guide.Google Scholar
Garnaud, X., Lesshafft, L., Schmid, P. J. & Huerre, P. 2013 Modal and transient dynamics of jet flows. Phys. Fluids 25 (4), 044103.Google Scholar
Gebhart, B., Jaluria, Y., Mahajan, R. L. & Sammakia, B. 1988 Buoyancy-Induced Flows and Transport. Hemisphere.Google Scholar
Green, S. 2012 Fluid Vortices, vol. 30. Springer.Google Scholar
Hallberg, M. P., Srinivasan, V., Gorse, P. & Strykowski, P. J. 2007 Suppression of global modes in low-density axisymmetric jets using coflow. Phys. Fluids 19 (1), 014102.Google Scholar
Hattori, T., Bartos, N., Norris, S. E., Kirkpatrick, M. P. & Armfield, S. W. 2013a Experimental and numerical investigation of unsteady behaviour in the near-field of pure thermal planar plumes. Exp. Therm. Fluid Sci. 46, 139150.Google Scholar
Hattori, T., Norris, S. E., Kirkpatrick, M. P. & Armfield, S. W. 2013b Prandtl number dependence and instability mechanism of the near-field flow in a planar thermal plume. J. Fluid Mech. 732, 105127.CrossRefGoogle Scholar
Huerre, P., Chakravarthy, R. & Lesshafft, L. 2016 Local and global instability of buoyant jets and plumes. In Contributions to the Foundations of Multidisciplinary Research in Mechanics (ed. Floryan, J. M.), vol. 2, pp. 957958. IUTAM 2017.Google Scholar
Jiang, X. & Luo, K. H. 2000a Direct numerical simulation of the puffing phenomenon of an axisymmetric thermal plume. Theor. Comput. Fluid Dyn. 14 (1), 5574.Google Scholar
Jiang, X. & Luo, K. H. 2000b Spatial direct numerical simulation of the large vortical structures in forced plumes. Flow Turbul. Combust. 64 (1), 4369.Google Scholar
Juniper, M. P., Hanifi, A. & Theofilis, V. 2014 Modal stability theory: lecture notes from the flow-nordita summer school on advanced instability methods for complex flows, Stockholm, Sweden, 2013. Appl. Mech. Rev. 66 (2), 024804.Google Scholar
Khorrami, M. R., Malik, M. R. & Ash, R. L. 1989 Application of spectral collocation techniques to the stability of swirling flows. J. Comput. Phys. 81 (1), 206229.Google Scholar
Kyle, D. M. & Sreenivasan, K. R. 1993 The instability and breakdown of a round variable-density jet. J. Fluid Mech. 249, 619664.Google Scholar
Lazar, E., Deblauw, B., Glumac, N., Dutton, C. & Elliott, G.2010 A practical approach to PIV uncertainty analysis. AIAA Paper 2010-4355.Google Scholar
Lesshafft, L. & Huerre, P. 2007 Linear impulse response in hot round jets. Phys. Fluids 19 (2), 024102.Google Scholar
Maxworthy, T. 1999 The flickering candle: transition to a global oscillation in a thermal plume. J. Fluid Mech. 390, 297323.Google Scholar
Melling, A. 1997 Tracer particles and seeding for particle image velocimetry. Meas. Sci. Technol. 8 (12), 14061416.Google Scholar
Mollendorf, J. C. & Gebhart, B. 1973 An experimental and numerical study of the viscous stability of a round laminar vertical jet with and without thermal buoyancy for symmetric and asymmetric disturbances. J. Fluid Mech. 61 (02), 367399.Google Scholar
Monkewitz, P. A., Bechert, D. W., Barsikow, B. & Lehmann, B. 1990 Self-excited oscillations and mixing in a heated round jet. J. Fluid Mech. 213, 611639.Google Scholar
Monkewitz, P. A. & Sohn, K. 1988 Absolute instability in hot jets. AIAA J. 26 (8), 911916.Google Scholar
Moreno-Boza, D., Coenen, W., Sevilla, A., Carpio, J., Sánchez, A. L. & Liñán, A. 2016 Diffusion-flame flickering as a hydrodynamic global mode. J. Fluid Mech. 798, 9971014.Google Scholar
Nichols, J. W., Schmid, P. J. & Riley, J. J. 2007 Self-sustained oscillations in variable-density round jets. J. Fluid Mech. 582, 341376.Google Scholar
O’hern, T. J., Weckman, E. J., Gerhart, A. L., Tieszen, S. R. & Schefer, R. W. 2005 Experimental study of a turbulent buoyant helium plume. J. Fluid Mech. 544, 143171.Google Scholar
Riley, D. S. & Tveitereid, M. 1984 On the stability of an axisymmetric plume in a uniform stream. J. Fluid Mech. 142, 171186.Google Scholar
Satti, R. P. & Agrawal, A. K. 2006 Flow structure in the near-field of buoyant low-density gas jets. Intl J. Heat Fluid Flow 27 (2), 336347.CrossRefGoogle Scholar
Scarano, F. & Riethmuller, M. L. 2000 Advances in iterative multigrid PIV image processing. Exp. Fluids 29 (1), S051S060.Google Scholar
Soteriou, M. C., Dong, Y. & Cetegen, B. M. 2002 Lagrangian simulation of the unsteady near field dynamics of planar buoyant plumes. Phys. Fluids 14 (9), 31183140.Google Scholar
Sreenivasan, K. R., Raghu, S. & Kyle, D. 1989 Absolute instability in variable density round jets. Exp. Fluids 7 (5), 309317.Google Scholar
Srinivasan, V., Hallberg, M. P. & Strykowski, P. J. 2010 Viscous linear stability of axisymmetric low-density jets: parameters influencing absolute instability. Phys. Fluids 22 (2), 024103.Google Scholar
Subbarao, E. R. & Cantwell, B. J. 1992 Investigation of a co-flowing buoyant jet: experiments on the effect of Reynolds number and Richardson number. J. Fluid Mech. 245, 6990.Google Scholar
Tammisola, O., Lundell, F., Schlatter, P., Wehrfritz, A. & Söderberg, L. D. 2011 Global linear and nonlinear stability of viscous confined plane wakes with co-flow. J. Fluid Mech. 675, 397434.Google Scholar
Theofilis, V. 2003 Advances in global linear instability analysis of nonparallel and three-dimensional flows. Prog. Aerosp. Sci. 39 (4), 249315.Google Scholar
Trefethen, L. N. 2000 Spectral Methods in MATLAB, vol. 10. SIAM.Google Scholar
Tveitereid, M. & Riley, D. S. 1992 Nonparallel-flow stability of an axisymmetric buoyant plume in a coflowing uniform stream. Phys. Fluids A 4 (10), 21512161.Google Scholar
Wakitani, S. 1980 The stability of a natural convection flow above a point heat source. J. Phys. Soc. Japan 49 (6), 23922399.Google Scholar
Weideman, J. A. & Reddy, S. C. 2000 A matlab differentiation matrix suite. ACM Trans. Math. Softw. 26 (4), 465519.Google Scholar
Westerweel, J. & Scarano, F. 2005 Universal outlier detection for PIV data. Exp. Fluids 39 (6), 10961100.Google Scholar
Wilke, C. R. 1950 A viscosity equation for gas mixtures. J. Chem. Phys. 18 (4), 517519.Google Scholar