Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-12-01T04:43:52.971Z Has data issue: false hasContentIssue false

Global effect of local skin friction drag reduction in spatially developing turbulent boundary layer

Published online by Cambridge University Press:  20 September 2016

A. Stroh*
Affiliation:
Institute of Fluid Mechanics, Karlsruhe Institute of Technology (KIT), Kaiserstraße 10, 76131 Karlsruhe, Germany
Y. Hasegawa
Affiliation:
Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
P. Schlatter
Affiliation:
Linné Flow Centre, KTH Mechanics, SE-100 44 Stockholm, Sweden
B. Frohnapfel
Affiliation:
Institute of Fluid Mechanics, Karlsruhe Institute of Technology (KIT), Kaiserstraße 10, 76131 Karlsruhe, Germany
*
Email address for correspondence: [email protected]

Abstract

A numerical investigation of two locally applied drag-reducing control schemes is carried out in the configuration of a spatially developing turbulent boundary layer (TBL). One control is designed to damp near-wall turbulence and the other induces constant mass flux in the wall-normal direction. Both control schemes yield similar local drag reduction rates within the control region. However, the flow development downstream of the control significantly differs: persistent drag reduction is found for the uniform blowing case, whereas drag increase is found for the turbulence damping case. In order to account for this difference, the formulation of a global drag reduction rate is suggested. It represents the reduction of the streamwise force exerted by the fluid on a plate of finite length. Furthermore, it is shown that the far-downstream development of the TBL after the control region can be described by a single quantity, namely a streamwise shift of the uncontrolled boundary layer, i.e. a changed virtual origin. Based on this result, a simple model is developed that allows the local drag reduction rate to be related to the global one without the need to conduct expensive simulations or measurements far downstream of the control region.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bewley, T. R., Moin, P. & Temam, R. 2001 DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms. J. Fluid Mech. 447, 179225.CrossRefGoogle Scholar
Bobke, A., Vinuesa, R., Örlü, R. & Schlatter, P. 2016 Large-eddy simulations of adverse pressure gradient turbulent boundary layers. J. Phys.: Conf. Ser. 708 (1), 012012.Google Scholar
Chevalier, M., Schlatter, P., Lundbladh, A. & Henningson, D. S.2007 SIMSON – a pseudo-spectral solver for incompressible boundary layer flow. Tech. Rep. TRITA-MEK 2007:7, Royal Institute of Technology, Stockholm, Sweden.Google Scholar
Choi, H., Moin, P. & Kim, J. 1994 Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech. 262, 75110.Google Scholar
Choi, H., Temam, R., Moin, P. & Kim, J. 1993 Feedback control for unsteady flow and its application to the stochastic Burgers equation. J. Fluid Mech. 253, 509543.CrossRefGoogle Scholar
Frohnapfel, B., Hasegawa, Y. & Kasagi, N. 2010 Friction drag reduction through damping of the near-wall spanwise velocity fluctuation. Intl J. Heat Fluid Flow 31 (3), 434441.CrossRefGoogle Scholar
Gatti, D. & Quadrio, M. 2016 Reynolds-number dependence of turbulent skin-friction drag reduction induced by spanwise forcing. J. Fluid Mech. 802, 553582.CrossRefGoogle Scholar
Goldschmied, F. R.1951. Skin friction of incompressible turbulent boundary layers under adverse pressure gradients. NACA TN 2431.Google Scholar
Iwamoto, K., Fukagata, K., Kasagi, N. & Suzuki, Y. 2005 Friction drag reduction achievable by near-wall turbulence manipulation at high Reynolds numbers. Phys. Fluids 17 (1), 011702.Google Scholar
Iwamoto, K., Suzuki, Y. & Kasagi, N. 2002 Reynolds number effect on wall turbulence: toward effective feedback control. Intl J. Heat Fluid Flow 23 (5), 678689.CrossRefGoogle Scholar
Kametani, Y. & Fukagata, K. 2011 Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction. J. Fluid Mech. 681, 154172.CrossRefGoogle Scholar
Kametani, Y., Fukagata, K., Örlü, R. & Schlatter, P. 2015 Effect of uniform blowing/suction in a turbulent boundary layer at moderate Reynolds number. Intl J. Heat Fluid Flow 55, 132142.CrossRefGoogle Scholar
von Kármán, Th. 1921 On laminar and turbulent friction. J. Appl. Math. Mech. 1 (4), 233252.Google Scholar
Kasagi, N., Suzuki, Y. & Fukagata, K. 2009 Microelectromechanical systems-based feedback control of turbulence for skin friction reduction. Annu. Rev. Fluid Mech. 41, 231251.CrossRefGoogle Scholar
Kim, K., Sung, H. & Chung, M. 2002 Assessment of local blowing and suction in a turbulent boundary layer. AIAA J. 40, 175177.Google Scholar
Lardeau, S. & Leschziner, M. A. 2013 The streamwise drag-reduction response of a boundary layer subjected to a sudden imposition of transverse oscillatory wall motion. Phys. Fluids 25 (7), 075109.CrossRefGoogle Scholar
Lee, C., Kim, J. & Choi, H. 1998 Suboptimal control of turbulent channel flow for drag reduction. J. Fluid Mech. 358, 245258.CrossRefGoogle Scholar
Mickley, H. S. & Davis, R. S.1957 Momentum transfer for flow over a flat plate with blowing. NACA TN 4017.Google Scholar
Nagib, H., Chauhan, K. & Monkewitz, P. 2007 Approach to an asymptotic state for zero pressure gradient turbulent boundary layers. Phil. Trans. R. Soc. Lond. A 365 (1852), 755770.Google Scholar
Narasimha, R. & Sreenivasan, K. R. 1988 Flat plate drag reduction by turbulence manipulation. Sadhana 12 (1–2), 1530.Google Scholar
Pamiès, M., Garnier, E., Merlen, A. & Sagaut, P. 2007 Response of a spatially developing turbulent boundary layer to active control strategies in the framework of opposition control. Phys. Fluids 19 (10), 108102.Google Scholar
Park, J. & Choi, H. 1999 Effects of uniform blowing or suction from a spanwise slot on a turbulent boundary layer flow. Phys. Fluids 11 (10), 30953105.Google Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Quadrio, M. 2011 Drag reduction in turbulent boundary layers by in-plane wall motion. Phil. Trans. R. Soc. Lond. A 369 (1940), 14281442.Google Scholar
Schlatter, P. & Örlü, R. 2012 Turbulent boundary layers at moderate Reynolds numbers: inflow length and tripping effects. J. Fluid Mech. 710, 534.Google Scholar
Schlatter, P., Örlü, R., Li, Q., Brethouwer, G., Fransson, J. H. M., Johansson, A. V., Alfredsson, P. H. & Henningson, D. S. 2009 Turbulent boundary layers up to Re 𝜃 = 2500 studied through simulation and experiment. Phys. Fluids 21 (5), 51702.Google Scholar
Spalart, P. & McLean, J. 2011 Drag reduction: enticing turbulence, and then an industry. Phil. Trans. R. Soc. Lond. A 369 (1940), 15561569.Google ScholarPubMed
Stroh, A., Frohnapfel, B., Schlatter, P. & Hasegawa, Y. 2015 A comparison of opposition control in turbulent boundary layer and turbulent channel flow. Phys. Fluids 27 (7), 075101.Google Scholar
White, F. 2006 Viscous Fluid Flow. McGraw-Hill.Google Scholar
Yudhistira, I. & Skote, M. 2011 Direct numerical simulation of a turbulent boundary layer over an oscillating wall. J. Turbul. 12 (9), 117.CrossRefGoogle Scholar