Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T12:44:21.024Z Has data issue: false hasContentIssue false

Geostrophic and chimney regimes in rotating horizontal convection with imposed heat flux

Published online by Cambridge University Press:  15 June 2017

Catherine A. Vreugdenhil*
Affiliation:
Research School of Earth Sciences, Australian National University, Canberra, ACT 2601, Australia
Ross W. Griffiths
Affiliation:
Research School of Earth Sciences, Australian National University, Canberra, ACT 2601, Australia
Bishakhdatta Gayen
Affiliation:
Research School of Earth Sciences, Australian National University, Canberra, ACT 2601, Australia
*
Email address for correspondence: [email protected]

Abstract

Convection in a rotating rectangular basin with differential thermal forcing at one horizontal boundary is examined using laboratory experiments. The experiments have an imposed heat flux boundary condition, are at large values of the flux Rayleigh number ($Ra_{F}\sim O(10^{13}{-}10^{14})$ based on the box length $L$), use water with Prandtl number $Pr\approx 4$ and have a small depth to length aspect ratio. The results show the conditions for transition from non-rotating horizontal convection governed by an inertial–buoyancy balance in the thermal boundary layer, to circulation governed by geostrophic flow in the boundary layer. The geostrophic balance constrains mean flow and reduces the heat transport as Nusselt number $Nu\sim (Ra_{F}Ro)^{1/6}$, where $Ro=B^{1/2}/f^{3/2}L$ is the convective Rossby number, $B$ is the imposed buoyancy flux and $f$ is the Coriolis parameter. Thus flow in the geostrophic boundary layer regime is governed by the relative roles of horizontal convective accelerations and Coriolis accelerations, or buoyancy and rotation, in the boundary layer. Experimental evidence suggests that for more rapid rotation there is another transition to a regime in which the momentum budget is dominated by fluctuating vertical accelerations in a region of vortical plumes, which we refer to as a ‘chimney’ following related discussion of regions of deep convection in the ocean. Coupling of the chimney convection in the region of destabilising boundary flux to the diffusive boundary layer of horizontal convection in the region of stabilising boundary flux gives heat transport independent of rotation in this ‘inertial chimney’ regime, and the new scaling $Nu\sim Ra_{F}^{1/4}$. Scaling analysis predicts the transition conditions observed in the experiments, as well as a further ‘geostrophic chimney’ regime in which the vertical plumes are controlled by local geostrophy. When $Ro<10^{-1}$, the convection is also observed to produce a set of large basin-scale gyres at all depths in the time-averaged flow.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aurnou, J. M., Calkins, M. A., Cheng, J. S., Julien, K., King, E. M., Nieves, D., Soderlund, K. M. & Stellmach, S. 2015 Rotating convective turbulence in earth and planetary cores. Phys. Earth Planet. Inter. 246, 5271.CrossRefGoogle Scholar
Baines, W. D. & Turner, J. S. 1969 Turbulent buoyant convection from a source in a confined region. J. Fluid Mech. 37, 5180.CrossRefGoogle Scholar
Barkan, R., Winters, K. B. & Llewellyn Smith, S. G. 2013 Rotating horizontal convection. J. Fluid Mech. 723, 556586.CrossRefGoogle Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Boubnov, B. M. 1984 Laboratory model of convection in a rotating annulus in conditions of horizontally and vertically inhomogeneous heating. Izv. Atmos. Ocean. Phys. 20, 767770.Google Scholar
Boubnov, B. M. & Golitsyn, G. S. 1986 Experimental study of convective structures in rotating fluids. J. Fluid Mech. 167, 503531.CrossRefGoogle Scholar
Boubnov, B. M. & Golitsyn, G. S. 1990 Temperature and velocity field regimes of convective motions in a rotating plane fluid layer. J. Fluid Mech. 219, 215239.CrossRefGoogle Scholar
Bryan, F. 1987 Parameter sensitivity of primitive equation ocean general circulation models. J. Phys. Oceanogr. 17, 970985.2.0.CO;2>CrossRefGoogle Scholar
Calkins, M. A., Julien, K., Tobias, S. M. & Aurnou, J. M. 2015 A multiscale dynamo model driven by quasi-geostrophic convection. J. Fluid Mech. 780, 143166.CrossRefGoogle Scholar
Chandrasekhar, S. 1953 The instability of a layer of fluid heated below and subject to coriolis forces. Proc. R. Soc. Lond. 217, 306327.Google Scholar
Colin de Verdière, A. 1988 Buoyancy driven planetary flows. J. Mar. Res. 42, 215265.CrossRefGoogle Scholar
Deardorff, J. W. 1985 Mixed-layer entrainment: a review. In 7th Symposium on Turbulence and Diffusion (ed. Weil, J. C.), pp. 3942. American Meteorological Society.Google Scholar
Gayen, B., Griffiths, R. W. & Hughes, G. O. 2014 Stability transitions and turbulence in horizontal convection. J. Fluid Mech. 751, 698724.CrossRefGoogle Scholar
Gayen, B., Griffiths, R. W., Hughes, G. O. & Saenz, J. A. 2013a Energetics of horizontal convection. J. Fluid Mech. 716, R10.CrossRefGoogle Scholar
Gayen, B., Hughes, G. O. & Griffiths, R. W. 2013b Completing the mechanical energy pathways in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 111 (12), 124301.CrossRefGoogle ScholarPubMed
Griffiths, R. W., Hughes, G. O. & Gayen, B. 2013 Horizontal convection dynamics: insights from transient adjustment. J. Fluid Mech. 726, 559595.CrossRefGoogle Scholar
Hignett, P., Ibbetson, A. & Killworth, P. D. 1981 On rotating thermal convection driven by non-uniform heating from below. J. Fluid Mech. 109, 161187.CrossRefGoogle Scholar
Hughes, G. O., Gayen, B. & Griffiths, R. W. 2013 Available potential energy in Rayleigh–Bénard convection. J. Fluid Mech. 729, R3.CrossRefGoogle Scholar
Hughes, G. O. & Griffiths, R. W. 2008 Horizontal convection. Annu. Rev. Fluid Mech. 40, 185208.CrossRefGoogle Scholar
Hughes, G. O., Griffiths, R. W., Mullarney, J. C. & Peterson, W. H. 2007 A theoretical model for horizontal convection at high Rayleigh number. J. Fluid Mech. 581, 251276.CrossRefGoogle Scholar
Jones, H. & Marshall, J. 1993 Convection with rotation in a neutral ocean: a study of open-ocean deep convection. J. Phys. Oceanogr. 23, 10091039.2.0.CO;2>CrossRefGoogle Scholar
Julien, K., Aurnou, J. M., Calkins, M. A., Knobloch, E., Marti, P., Stellmach, S. & Vasil, G. M. 2016 A nonlinear model for rotationally constrained convection with Ekman pumping. J. Fluid Mech. 798, 5087.CrossRefGoogle Scholar
Julien, K., Rubio, A. M., Grooms, I. & Knobloch, E. 2012 Statistical and physical balances in low Rossby number Rayleigh–Bénard convection. Geophys. Astrophys. Fluid Dyn. 106 (4–5), 392428.CrossRefGoogle Scholar
King, E. M., Stellmach, S. & Aurnou, J. M. 2012 Heat transfer by rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 691, 568582.CrossRefGoogle Scholar
King, E. M., Stellmach, S., Noir, J., Hansen, U. & Aurnou, J. M. 2009 Boundary layer control of rotating convection systems. Nature 457, 301304.CrossRefGoogle ScholarPubMed
Klinger, B. A. & Marshall, J. 1995 Regimes and scaling laws for rotating deep convection in the ocean. Dyn. Atmos. Oceans 21, 227256.CrossRefGoogle Scholar
Marshall, J. & Schott, F. 1999 Open-ocean convection: observations, theory, and models. Rev. Geophys. 37, 164.CrossRefGoogle Scholar
Maxworthy, T. & Narimousa, S. 1994 Unsteady, turbulent convection into a homogeneous, rotating fluid, with oceanographic applications. J. Phys. Oceanogr. 24, 865887.2.0.CO;2>CrossRefGoogle Scholar
Mullarney, J. C., Griffiths, R. W. & Hughes, G. O. 2004 Convection driven by differential heating at a horizontal boundary. J. Fluid Mech. 516, 181209.CrossRefGoogle Scholar
Nokes, R.2014 Streams, version 2.01: system theory and design. Tech. Rep. Department of Civil and Natural Resources Engineering, University of Canterbury, New Zealand.Google Scholar
Paparella, F. & Young, W. R. 2002 Horizontal convection is non-turbulent. J. Fluid Mech. 466, 205214.CrossRefGoogle Scholar
Park, Y.-G. & Bryan, K. 2000 Comparison of thermally driven circulations from a depth-coordinate model and an isopycnal-layer model. Part I: scaling-law sensitivity to vertical diffusivity. J. Phys. Oceanogr. 30, 590605.2.0.CO;2>CrossRefGoogle Scholar
Park, Y.-G. & Whitehead, J. A. 1999 Rotating convection driven by differential bottom heating. J. Phys. Oceanogr. 29, 12081220.2.0.CO;2>CrossRefGoogle Scholar
Plumley, M., Julien, K., Marti, P. & Stellmach, S. 2016 The effects of Ekman pumping on quasi-geostrophic Rayleigh–Bénard convection. J. Fluid Mech. 803, 5171.CrossRefGoogle Scholar
Quon, C. 1987 Nonlinear response of a rotating fluid to differential heating from below. J. Fluid Mech. 181, 233263.CrossRefGoogle Scholar
Read, P. L. 1986 Regimes of axisymmetric flow in an internally heated rotating fluid. J. Fluid Mech. 168, 255289.CrossRefGoogle Scholar
Read, P. L. 2003 A combined laboratory and numerical study of heat transport by baroclinic eddies and axisymmetric flows. J. Fluid Mech. 489, 301323.CrossRefGoogle Scholar
Robinson, A. R. 1960 The general thermal circulation in equatorial regions. Deep-Sea Res. 6, 311317.Google Scholar
Robinson, A. & Stommel, H. 1959 The oceanic thermocline and the associated thermohaline circulation. Tellus 11, 295308.CrossRefGoogle Scholar
Rossby, H. T. 1965 On thermal convection driven by non-uniform heating from below: an experimental study. Deep-Sea Res. 12, 916.Google Scholar
Rossby, T. 1998 Numerical experiments with a fluid heated non-uniformly from below. Tellus A 50, 242257.CrossRefGoogle Scholar
Ruddick, B. R. & Shirtcliffe, T. G. L. 1979 Data for double diffusers: physical properties of aqueous salt-sugar solutions. Deep-Sea Res. 26A, 775787.CrossRefGoogle Scholar
Saenz, J. A., Hogg, A. M., Hughes, G. O. & Griffiths, R. W. 2012 Mechanical power input from buoyancy and wind to the circulation in an ocean model. Geophys. Res. Lett. 39, L13605.CrossRefGoogle Scholar
Send, U. & Marshall, J. 1995 Integral effects of deep convection. J. Phys. Oceanogr. 25, 855872.2.0.CO;2>CrossRefGoogle Scholar
Sheard, G. J., Hussam, W. K. & Tsai, T. 2016 Linear stability and energetics of rotating radial horizontal convection. J. Fluid Mech. 795, 135.CrossRefGoogle Scholar
Stern, M. E. 1975 Ocean Circulation Physics. Academic.Google Scholar
Stewart, K. D., Hughes, G. O. & Griffiths, R. W. 2011 When do marginal seas and topographic sills modify the ocean density structure? J. Geophys. Res. 116, C08021.CrossRefGoogle Scholar
Vreugdenhil, C. A., Gayen, B. & Griffiths, R. W. 2016 Mixing and dissipation in a geostrophic buoyancy-driven circulation. J. Geophys. Res. Oceans 121, 60766091.CrossRefGoogle Scholar
Wang, W. & Huang, R. X. 2005 An experimental study on thermal circulation driven by horizontal differential heating. J. Fluid Mech. 540, 4973.CrossRefGoogle Scholar
Winton, M. 1996 The role of horizontal boundaries in parameter sensitivity and decadal–scale variability of coarse-resolution ocean general circulation models. J. Phys. Oceanogr. 26, 289304.2.0.CO;2>CrossRefGoogle Scholar
Zhang, Y., Chen, C., Zhang, Z. & Wang, W. 2016 Rotating horizontal convection and the potential vorticity constraint. J. Fluid Mech. 803, 7293.CrossRefGoogle Scholar

Vreugdenhil et al. supplementary movie

Side view movie from Experiment 4 with dye tracer and showing only the heated half of the box (RaF = 6.5 z 1014, f = 0.4s-1, Ro = 5.6 z 10-3).

Download Vreugdenhil et al. supplementary movie(Video)
Video 22.4 MB

Vreugdenhil et al. supplementary movie

Side view movie from Experiment 6 with dye tracer and showing only the heated half of the box (RaF = 6.8 z 1014, f = 1.6s-1, Ro = 7.1 z 10-4).

Download Vreugdenhil et al. supplementary movie(Video)
Video 29.7 MB