Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T16:30:49.507Z Has data issue: false hasContentIssue false

The geometric properties of high-Schmidt-number passive scalar iso-surfaces in turbulent boundary layers

Published online by Cambridge University Press:  24 September 2007

L. P. DASI
Affiliation:
School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0355, USA
F. SCHUERG
Affiliation:
School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0355, USA
D. R. WEBSTER
Affiliation:
School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0355, USA

Abstract

The geometric properties are quantified for concentration iso-surfaces of a high-Schmidt-number passive scalar field produced by an iso-kinetic source with an initial finite characteristic length scale released into the inertial layer of fully developed open-channel-flow turbulent boundary layers. The coverage dimension and other measures of two-dimensional transects of the passive scalar iso-surfaces are found to be scale dependent. The coverage dimension is around 1.0 at the order of the Batchelor length scale and based on our data increases in a universal manner to reach a local maximum at a length scale around the Kolmogorov scale. We introduce a new parameter called the coverage length underestimate, which demonstrates universal behaviour in the viscous–convective regime for these data and hence is a potentially useful practical tool for many mixing applications. At larger scales (in the inertial–convective regime), the fractal geometry measures are dependent on the Reynolds number, injection length scale, and concentration threshold of the iso-surfaces. Finally, the lacunarity of the iso-surface structure shows that the instantaneous scalar field is most inhomogenous around the length scale corresponding to the Kolmogorov scale.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allain, C. & Cloitre, M. 1991 Characterizing the lacunarity of random and deterministic fractal sets. Phys. Rev. A 44, 33523358.CrossRefGoogle ScholarPubMed
Catrakis, H. J. 2000 Distribution of scales in turbulence. Phys. Rev. E 62, 564578.Google ScholarPubMed
Catrakis, H. J. & Bond, C. L. 2000 Scale distributions of fluid interfaces in turbulence. Phys. Fluids 12, 22952301.CrossRefGoogle Scholar
Catrakis, H. J. & Dimotakis, P. E. 1996 Mixing in turbulent jets: scalar measures and isosurface geometry. J. Fluid Mech. 317, 369406.CrossRefGoogle Scholar
Catrakis, H. J. & Dimotakis, P. E. 1998 Shape complexity in turbulence. Phys. Rev. Lett. 80, 968971.CrossRefGoogle Scholar
Catrakis, H. J., Aguirre, R. C. & Ruiz-Plancarte, J. 2002 Area–volume properties of fluid interfaces in turbulence: scale-local self-similarity and cumulative scale dependence. J. Fluid Mech. 462, 245254.CrossRefGoogle Scholar
Crimaldi, J. P. & Koseff, J. R. 2001 High-resolution measurements of the spatial and temporal scalar structure of a turbulent plume. Exps. Fluids 31, 90102.CrossRefGoogle Scholar
Crimaldi, J. P., Wiley, M. B. & Koseff, J. R. 2002 The relationship between mean and instantaneous structure in turbulent passive scalar plumes. J. Turbulence 3 (014), 124.CrossRefGoogle Scholar
Dasi, L. P. 2004 The small-scale structure of passive scalar mixing in turbulent boundary layers. PhD thesis, Georgia Institute of Technology.Google Scholar
Dimotakis, P. E. 2000 The mixing transition in turbulent flows. J. Fluid Mech. 409, 6998.CrossRefGoogle Scholar
Fackrell, J. E. & Robins, A. G. 1982 Concentration fluctuations and fluxes in plumes from point sources in a turbulent boundary layer. J. Fluid Mech. 117, 126.CrossRefGoogle Scholar
Ferrier, A. J., Funk, D. R. & Roberts, P. J. W. 1993 Application of optical techniques to the study of plumes in stratified fluids. Dyn. Atmos. Oceans 20, 155183.CrossRefGoogle Scholar
Fitzgerald, E. J. & Jumper, E. J. 2004 The optical distortion mechanism in a nearly incompressible free shear layer. J. Fluid Mech. 512, 153189.CrossRefGoogle Scholar
Frederiksen, R. D., Dahm, W. J. A. & Dowling, D. R. 1996 Experimental assessment of fractal scale-similarity in turbulent flows. Part 1. One-dimensional intersections. J. Fluid Mech. 327, 3572.CrossRefGoogle Scholar
Frederiksen, R. D., Dahm, W. J. A. & Dowling, D. R. 1997 Experimental assessment of fractal scale-similarity in turbulent flows. Part 2. Higher-dimensional intersections and non-fractal inclusions. J. Fluid Mech. 338, 89126.CrossRefGoogle Scholar
Freund, J. B. 2001 Noise sources in a low-Reynolds-number turbulent jet at Mach 0.9. J. Fluid Mech. 438, 277305.CrossRefGoogle Scholar
Lück, St., Renner, Ch., Peinke, J. & Friedrich, R. 2006 The Markov–Einstein coherence length – a new meaning for the Taylor length in turbulence. Phys. Lett. A 359, 335338.CrossRefGoogle Scholar
Mandelbrot, B. B. 1975 On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars. J. Fluid Mech. 72, 401416.CrossRefGoogle Scholar
Mandelbrot, B. B. 1983 The Fractal Geometry of Nature. Freeman, New York.CrossRefGoogle Scholar
Miller, P. L. & Dimotakis, P. E. 1991 Stochastic geometric-properties of scalar interfaces in turbulent jets. Phys. Fluids A 3, 168177.CrossRefGoogle Scholar
Peitgen, H.-O., Jürgens, H. & Saupe, D. 1992 Chaos and Fractals: New Frontiers of Science. Springer.CrossRefGoogle Scholar
Plotnick, R. E., Gardner, R. H., Hargrove, W. W., Prestegaard, K. & Perlmutter, M. 1996 Lacunarity analysis: a general technique for the analysis of spatial patterns. Phys. Rev. E 53, 54615468.Google ScholarPubMed
Pope, S. B. 1988 The evolution of surfaces in turbulence. Intl J. Engng Sci. 26, 445469.CrossRefGoogle Scholar
Prasad, R. R. & Sreenivasan, K. R. 1990 Quantitative three-dimensional imaging and the structure of passive scalar fields in fully turbulent flows. J. Fluid Mech. 216, 134.CrossRefGoogle Scholar
Schuerg, F. 2003 Fractal geometry of iso-surfaces of a passive scalar in a turbulent boundary layer. MS thesis, Georgia Institute of Technology.Google Scholar
Schumacher, J. & Sreenivasan, K. R. 2005 Statistics and geometry of passive scalars in turbulence. Phys. Fluids 17, 125107.CrossRefGoogle Scholar
Shepherd, I. G., Cheng, R. K. & Talbot, L. 1992 Experimental criteria for the determination of fractal parameters of premixed turbulent flames. Exps. Fluids 13, 386392.CrossRefGoogle Scholar
Spalart, P. R. 1988 Direct simulation of a turbulent boundary-layer up to Re θ = 1410. J. Fluid Mech. 187, 6198.CrossRefGoogle Scholar
Sreenivasan, K. R. 1991 Fractals and multifractals in fluid turbulence. Annu. Rev. Fluid Mech. 23, 539600.CrossRefGoogle Scholar
Sreenivasan, K. R. & Meneveau, C. 1986 The fractal facets of turbulence. J. Fluid Mech. 173, 357386.CrossRefGoogle Scholar
Sreenivasan, K. R., Prasad, R. R., Meneveau, C. & Ramshankar, R. 1989 The fractal geometry of interfaces and the multifractal distribution of dissipation in fully turbulent flows. Pure Appl. Geophys. 131, 4360.CrossRefGoogle Scholar
Tachie, M. F., Balachandar, R. & Bergstrom, D. J. 2003 Low Reynolds number effects in open-channel turbulent boundary layers. Exps. Fluids 34, 616624.CrossRefGoogle Scholar
Villermaux, E. & Innocenti, C. 1999 On the geometry of turbulent mixing. J. Fluid Mech. 393, 123147.CrossRefGoogle Scholar
Villermaux, E., Innocenti, C. & Duplat, J. 2001 Short circuits in the Corrsin–Obukhov cascade. Phys. Fluids 13, 284289.CrossRefGoogle Scholar
Webster, D. R., Rahman, S. & Dasi, L. P. 2003 Laser-induced fluorescence measurements of a turbulent plume. J. Engng Mech. 129, 11301137.Google Scholar
Welander, P. 1955 Studies on the general development of motion in a two-dimensional, ideal fluid. Tellus 7, 141156.CrossRefGoogle Scholar