Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-20T08:48:17.421Z Has data issue: false hasContentIssue false

Generation of secondary droplets in coalescence of a drop at a liquid–liquid interface

Published online by Cambridge University Press:  12 May 2010

B. RAY
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
G. BISWAS*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
A. SHARMA
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
*
Email address for correspondence: [email protected]

Abstract

When a droplet of liquid 1 falls through liquid 2 to eventually hit the liquid 2–liquid 1 interface, its initial impact on the interface can produce daughter droplets of liquid 1. In some cases, a partial coalescence cascade governed by self-similar capillary-inertial dynamics is observed, where the fall of the secondary droplets in turn continues to produce further daughter droplets. Results show that inertia and interfacial surface tension forces largely govern the process of partial coalescence. The partial coalescence is suppressed by the viscous force when Ohnesorge number is below a critical value and also by gravity force when Bond number exceeds a critical value. Generation of secondary drop is observed for systems of lower Ohnesorge number for liquid 1, lower and intermediate Ohnesorge number for liquid 2 and for low and intermediate values of Bond number. Whenever the horizontal momentum in the liquid column is more than the vertical momentum, secondary drop is formed. A transition regime from partial to complete coalescence is obtained when the neck radius oscillates twice. In this regime, the main body of the column can be fitted to power-law scaling model within a specific time range. We investigated the conditions and the outcome of these coalescence events based on numerical simulations using a coupled level set and volume of fluid method (CLSVOF).

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agarwal, D. K., Welch, S. W. J., Biswas, G. & Durst, F. 2004 Planar simulation of bubble growth in film boiling in near-critical water using a variant of the VOF method. J. Heat Transfer 126, 329338.CrossRefGoogle Scholar
Aryafar, H. & Kavehpour, H. P. 2006 Drop coalescence through planar surfaces. Phys. Fluids 18, 072105(1)072105(6).CrossRefGoogle Scholar
Berry, E. X. & Reinhardt, R. L. 1974 Analysis of cloud drop growth by collection. III. Accretion and self-collection. J. Atmos. Sci. 31, 21182126.2.0.CO;2>CrossRefGoogle Scholar
Bhakta, A. & Ruckenstein, E. 1997 Decay of standing foams: drainage, coalescence and collapse. Adv. Colloid Interface Sci. 70, 1124.CrossRefGoogle Scholar
Blanchette, F. & Bigioni, T. P. 2006 Partial coalescence of drops at liquid interfaces. Nat. Phys. 2, 254257.CrossRefGoogle Scholar
Blanchette, F. & Bigioni, T. P. 2009 Dynamics of drop coalescence at fluid interfaces. J. Fluid Mech. 620, 333352.CrossRefGoogle Scholar
Brackbill, J. U., Kothe, D. B. & Zemach, C. 1992 A continuum method for modelling surface tension. J. Comput. Phys. 100, 335354.CrossRefGoogle Scholar
Cai, Y. K. 1989 Phenomena of a liquid drop falling to a liquid surface. Exp. Fluids. 7, 388394.CrossRefGoogle Scholar
Chakraborty, I., Ray, B., Biswas, G., Durst, F., Sharma, A. & Ghoshdastidar, P. S. 2009 Computational investigation on bubble detachment from submerged orifice in quiescent liquid under normal and reduced gravity. Phys. Fluids 21, 062103(1)–062103(17).CrossRefGoogle Scholar
Chang, Y. C., Hou, T. Y., Merriman, B. & Osher, S. 1996 A level-set formulation of eulerian interface capturing methods for incompressible fluid flows. J. Comput. Phys. 124, 449464.CrossRefGoogle Scholar
Charles, G. E. & Mason, S. G. 1960 a The coalescence of liquid drops with flat liquid/liquid interfaces. J. Colloid Sci. 15, 236267.CrossRefGoogle Scholar
Charles, G. E. & Mason, S. G. 1960 b The mechanism of partial coalescence of liquid drops at liquid/liquid interfaces. J. Colloid Sci. 15, 105122.CrossRefGoogle Scholar
Chen, X., Mandre, S. & Feng, J. J. 2006 a Partial coalescence between a drop and a liquid–liquid interface. Phys. Fluids 18, 051705(1)051705(4).Google Scholar
Chen, X., Mandre, S. & Feng, J. J. 2006 b An experimental study of the coalescence between a drop and an interface in newtonian and polymeric liquids. Phys. Fluids 18, 092103(1)092103(14).Google Scholar
Ching, B., Golay, M. W. & Johnson, T. J. 1984 Droplet impacts upon liquid surfaces. Science 226, 535537.CrossRefGoogle ScholarPubMed
Deng, Q., Anilkumar, A. V. & Wang, T. G. 2007 The role of viscosity and surface tension in bubble entrapment during drop impact onto a deep liquid pool. J. Fluid Mech. 578, 119138.CrossRefGoogle Scholar
Duchemin, L., Josserand, C. & Clavin, P. 2005 Asymptotic behaviour of the Rayleigh–Taylor instability. Phys. Rev. L 94, 224501(1)224501(4).CrossRefGoogle ScholarPubMed
Duchemin, L., Popinet, S., Josserand, C. & Zaleski, S. 2002 Jet formation in bubbles bursting at free surface. Phys. Fluids 14, 30003008.CrossRefGoogle Scholar
Fedorchenko, A. I. & Wang, A. B. 2004 On some common features of drop impact on liquid surfaces. Phys. Fluids. 16, 13491365.CrossRefGoogle Scholar
Gerlach, D., Tomar, G., Biwas, G. & Durst, F. 2006 Comparison of volume-of-fluid methods for surface tension-dominant two-phase flows. Intl J. Heat Mass Transfer 49, 740754.CrossRefGoogle Scholar
Gilet, T., Mulleners, K., Lecomte, J. P., Vandewalle, N. & Dorbolo, S. 2007 a Critical parameters for the partial coalescence of a droplet. Phys. Rev. E 75, 036303(1)036303(14).CrossRefGoogle ScholarPubMed
Gilet, T., Vandewalle, N. & Dorbolo, S. 2007 b Controlling the partial coalescence of a droplet on a vertically vibrated bath. Phys. Rev. E 76, 035302(1)035302(4).CrossRefGoogle ScholarPubMed
Harlow, F. H. & Welch, J. E. 1965 Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 21822189.CrossRefGoogle Scholar
Hirt, C. W. & Nichols, B. D. 1981 Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201225.CrossRefGoogle Scholar
Hogrefe, J. E., Peffley, N. L., Goodridge, C. L., Shi, W. T., Hentschel, H. G. E. & Lathrop, D. P. 1998 Power-law singularities in gravity-capillary waves. Physica D 123, 183205.CrossRefGoogle Scholar
Honey, E. M. & Kavehpour, H. P. 2006 Astonishing life of a coalescing drop on a free surface. Phys. Rev. E 167, 027301(1)027301(4).Google Scholar
Jayaratne, O. W. & Mason, B. J. 1964 The coalescence and bouncing of water drops at an air/water interface. Proc. R. Soc. Lond. 280, 545565.Google Scholar
Liow, J. L. 2001 Splash formation by spherical drops. J. Fluid Mech. 427, 73105.Google Scholar
Marucci, G. 1969 A theory of coalescence. Chem. Engng Sci. 24, 975985.CrossRefGoogle Scholar
Menchaca-Rocha, A., Martinez-Davalos, A., Nunez, R., Popinet, S. & Zaleski, S. 2001 Coalescence of liquid drops by surface tension. Phys. Rev. E 63, 046309(1)046309(5).CrossRefGoogle ScholarPubMed
Mohamed-Kassim, Z. & Longmire, E. K. 2003 Drop impact on a liquid/liquid interface. Phys. Fluids 15, 32633273.CrossRefGoogle Scholar
Mohamed-Kassim, Z. & Longmire, E. K. 2004 Drop coalescence through a liquid/liquid interface. Phys. Fluids 16, 21702181.CrossRefGoogle Scholar
Morton, D., Rudman, M. & Liow, J. L. 2000 An investigation of the flow regimes resulting from splashing drops. Phys. Fluids 12, 747763.CrossRefGoogle Scholar
Osher, S. & Sethian, J. A. 1988 Fronts propagating with curvature-dependent speed: Algorithm based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 1249.CrossRefGoogle Scholar
Pikhitsa, P. & Tsargorodskaya, A. 2000 Possible mechanism for the multistage coalescence of a floating droplet on the air/liquid interface. Colloids Surf. A 167, 287291.CrossRefGoogle Scholar
Popinet, S. & Zaleski, S. 1999 A front tracking algorithm for the accurate representation of surface tension. Intl J. Numer. Methods Fluids 30, 775793.3.0.CO;2-#>CrossRefGoogle Scholar
Puckett, E. G., Almgren, A. S., Bell, J. B., Marcus, D. L. & Rider, W. J. 1997 High-order projection method for tracking fluid interface in variable density incompressible flows boundaries. J. Comput. Phys. 130, 269282.CrossRefGoogle Scholar
Raes, F., Dingenena, R. V., Vignatia, E., Wilsona, J., Putauda, J. P., Seinfeldb, J. H. & Adams, P. 2000 Formation and cycling of aerosols in the global troposphere. Atmos. Environ. 34, 42154240.CrossRefGoogle Scholar
Rein, M. 1996 The transitional regime between coalescing and splashing drops. J. Fluid Mech. 306, 145165.CrossRefGoogle Scholar
Rudman, M. 1997 Volume-tracking methods for interfacial flow calculations. Intl J. Numer. Methods Fluids 24, 671691.3.0.CO;2-9>CrossRefGoogle Scholar
Sarpkaya, T. 1996 Vorticity, free surface, and surfactants. Annu. Rev. Fluid Mech. 28, 83128.CrossRefGoogle Scholar
Schotland, R. M. 1960 Experimental results relating to the coalescence of water drops with water surfaces. Discuss. Faraday Soc. 30, 7277.CrossRefGoogle Scholar
Sethian, J. A. 1999 Level Set Methods and Fast Marching Methods. Cambridge University Press.Google Scholar
Sussman, M. & Puckett, E. G. 2000 A coupled level-set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J. Comput. Phys. 162, 301337.CrossRefGoogle Scholar
Thompson, J. J. & Newall, H. F. 1885 On the formation of vortex rings by drops falling into liquids and some allied phenomena. Proc. R. Soc. Lond. 39, 417436.Google Scholar
Thoroddsen, S. T., Etoh, T. G. & Takehara, K. 2003 Air entrapment under an impacting drop. J. Fluid Mech. 478, 125134.CrossRefGoogle Scholar
Thoroddsen, S. T. & Takehara, K. 2000 The coalescence cascade of a drop. Phys. Fluids 12, 12651267.CrossRefGoogle Scholar
Thoroddsen, S. T., Takehara, K. & Etoh, T. G. 2005 The coalescence speed of a pendent and a sessile drop. J. Fluid Mech. 527, 85114.CrossRefGoogle Scholar
Tomar, G., Biswas, G., Sharma, A. & Agarwal, A. 2005 Numerical simulation of bubble growth in film boiling using CLSVOF method. Phys. Fluids 17 (1), 112103(1)112103(13).CrossRefGoogle Scholar
Vander Vorst, H. A. 1992 Bi-cgstab: a fast and smoothly converging variant of Bi-CG for solution of non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 12, 631644.CrossRefGoogle Scholar
Vandewalle, N., Terwagne, D., Mulleners, K., Gilet, T. & Dorbolo, S. 2006 Dancing droplets onto liquid surfaces. Phys. Fluids 18, 091106.CrossRefGoogle Scholar
Welch, S. W. J. & Rachidi, T. 2002 Numerical computation of film boiling including conjugate heat transfer. Numer. Heat Transfer B 42, 3553.CrossRefGoogle Scholar
Welch, S. W. J. & Wilson, J. 2000 A volume of fluid bases method for fluid flows with phase change. J. Comput. Phys. 160, 662682.CrossRefGoogle Scholar
Youngs, D. L. 1982 Time-dependent multi-material flow with large fluid distortion. In Numerical Methods for Fluid Dynamics (ed. Morton, K. W. & Baines, M. J.), pp. 273285. Academic Press.Google Scholar
Yue, P., Zhou, C. & Feng, J. J. 2006 A computational study of the coalescence between a drop and an interface in newtonian and viscoelastic fluids. Phys. Fluids 18, 102102(1)102102(14).CrossRefGoogle Scholar
Zhang, F. H., Li, E. Q. & Thoroddsen, S. T. 2009 Satellite formation during coalescence of unequal size drops. Phys. Rev. L 102, 104502(1)104502(4).CrossRefGoogle ScholarPubMed