Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T08:56:18.291Z Has data issue: false hasContentIssue false

Generalized Lagrangian heterogeneous multiscale modelling of complex fluids

Published online by Cambridge University Press:  10 August 2023

Nicolas Moreno*
Affiliation:
Basque Center for Applied Mathematics (BCAM), Alameda de Mazarredo, 14, 48400 Bilbao, Spain
Marco Ellero*
Affiliation:
Basque Center for Applied Mathematics (BCAM), Alameda de Mazarredo, 14, 48400 Bilbao, Spain IKERBASQUE, Basque Foundation for Science, Calle de Maria Dias de Haro 3, 48013 Bilbao, Spain Zienkiewicz Center for Computational Engineering (ZCCE), Swansea University, Bay Campus, Swansea SA1 8EN, UK
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

We introduce a fully Lagrangian heterogeneous multiscale method (LHMM) to model complex fluids with microscopic features that can extend over large spatio/temporal scales, such as polymeric solutions and multiphasic systems. The proposed approach discretizes the fluctuating Navier–Stokes equations in a particle-based setting using smoothed dissipative particle dynamics (SDPD). This multiscale method uses microscopic information derived on-the-fly to provide the stress tensor of the momentum balance in a macroscale problem, therefore bypassing the need for approximate constitutive relations for the stress. We exploit the intrinsic multiscale features of SDPD to account for thermal fluctuations as the characteristic size of the discretizing particles decreases. We validate the LHMM using different flow configurations (reverse Poiseuille flow, flow passing a cylinder array and flow around a square cavity) and fluid (Newtonian and non-Newtonian). We show the framework's flexibility to model complex fluids at the microscale using multiphase and polymeric systems. We also show that stresses are adequately captured and passed from micro to macro scales, leading to richer fluid response at the continuum. In general, the proposed methodology provides a natural link between variations at a macroscale, whereas accounting for memory effects of microscales.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexiadis, A., Lockerby, D.A., Borg, M.K. & Reese, J.M. 2013 A Laplacian-based algorithm for non-isothermal atomistic-continuum hybrid simulation of micro and nano-flows. Comput. Meth. Appl. Mech. Engng 264, 8194.CrossRefGoogle Scholar
Bertevas, E., Fan, X. & Tanner, R.I. 2010 Simulation of the rheological properties of suspensions of oblate spheroidal particles in a Newtonian fluid. Rheol. Acta 49 (1), 5373.CrossRefGoogle Scholar
Bian, X., Litvinov, S., Qian, R., Ellero, M. & Adams, N.A. 2012 Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics. Phys. Fluids 24, 012002.CrossRefGoogle Scholar
Bird, R.B., Curtiss, F.C., Amstrong, C.R. & Ole, H. 1987 Dynamics of polymeric liquids, second edition volume 2: Kinetic theory, vol. 2. John Wiley and Sons.Google Scholar
Borg, M.K., Lockerby, D.A. & Reese, J.M. 2015 A hybrid molecular-continuum method for unsteady compressible multiscale flows. J. Fluid Mech. 768, 388414.CrossRefGoogle Scholar
Colagrossi, A., Durante, D., Avalos, J.B. & Souto-Iglesias, A. 2017 Discussion of stokes’ hypothesis through the smoothed particle hydrodynamics model. Phys. Rev. E 96, 023101.CrossRefGoogle ScholarPubMed
Ee, W., Engquist, B., Li, X., Ren, W. & Vanden-Eijnden, E. 2007 Heterogeneous multiscale methods: a review. Commun. Comput. Phys. 2, 367450.Google Scholar
Ee, W., Ren, W. & Vanden-Eijnden, E. 2009 A general strategy for designing seamless multiscale methods. J. Comput. Phys. 228 (15), 54375453.CrossRefGoogle Scholar
Einarsson, J., Yang, M. & Shaqfeh, E.S.G. 2018 Einstein viscosity with fluid elasticity. Phys. Rev. Fluids 3, 013301.CrossRefGoogle Scholar
Ellero, M. & Adams, N.A. 2011 SPH simulations of flow around a periodic array of cylinders confined in a channel. Intl J. Numer. Meth. Engng 86, 10271040.CrossRefGoogle Scholar
Ellero, M. & Español, P. 2018 Everything you always wanted to know about SDPD (but were afraid to ask). Appl. Maths Mech. 39 (1), 103124.CrossRefGoogle Scholar
Ellero, M., Español, P. & Flekkoy, E.G. 2003 Thermodynamically consistent fluid particle model for viscoelastic flows. Phys. Rev. E 68, 041504.CrossRefGoogle ScholarPubMed
Español, P. & Revenga, M. 2003 Smoothed dissipative particle dynamics. Phys. Rev. E 67 (2), 12.CrossRefGoogle ScholarPubMed
Fedosov, D.A., Karniadakis, G.E. & Caswell, B. 2010 Steady shear rheometry of dissipative particle dynamics models of polymer fluids in reverse Poiseuille flow. J. Chem. Phys. 132 (14), 144103.CrossRefGoogle ScholarPubMed
Feng, H., Andreev, M., Pilyugina, E. & Schieber, J.D. 2016 Smoothed particle hydrodynamics simulation of viscoelastic flows with the slip-link model. Mol. Syst. Des. Engng 1 (1), 99108.CrossRefGoogle Scholar
Giessen, E.V.D., et al. 2020 Roadmap on multiscale materials modeling. Model. Simul. Mater. Sci. Engng 28, 043001.CrossRefGoogle Scholar
Hajizadeh, E. & Larson, R.G. 2017 Stress-gradient-induced polymer migration in Taylor–Couette flow. Soft Matt. 13, 59425949.CrossRefGoogle ScholarPubMed
Ingelsten, S., Mark, A., Kadar, R. & Edelvik, F. 2021 A backwards-tracking Lagrangian–Eulerian method for viscoelastic two-fluid flows. Appl. Sci. 11, 439.CrossRefGoogle Scholar
Kapiamba, K.F. 2022 Mini-review of the microscale phenomena during emulsification of highly concentrated emulsions. Colloid Interface Sci. Commun. 47, 100597.CrossRefGoogle Scholar
Kulkarni, P.M., Fu, C.C., Shell, M.S. & Leal, L.G. 2013 Multiscale modeling with smoothed dissipative particle dynamics. J. Chem. Phys. 138, 234105.CrossRefGoogle ScholarPubMed
Laso, M. & Öttinger, H.C. 1993 Calculation of viscoelastic flow using molecular models: the connffessit approach. J. Non-Newtonian Fluid Mech. 47, 120.CrossRefGoogle Scholar
Lei, H., Baker, N.A., Wu, L., Schenter, G.K., Mundy, C.J. & Tartakovsky, A.M. 2016 Smoothed dissipative particle dynamics model for mesoscopic multiphase flows in the presence of thermal fluctuations. Phys. Rev. E 94 (2), 116.CrossRefGoogle ScholarPubMed
Litvinov, S., Ellero, M., Hu, X. & Adams, N.A. 2008 Smoothed dissipative particle dynamics model for polymer molecules in suspension. Phys. Rev. E 77, 066703.CrossRefGoogle ScholarPubMed
Lockerby, D.A., Duque-Daza, C.A., Borg, M.K. & Reese, J.M. 2013 Time-step coupling for hybrid simulations of multiscale flows. J. Comput. Phys. 237, 344365.CrossRefGoogle Scholar
Minale, M., Moldenaers, P. & Mewis, J. 1997 Effect of shear history on the morphology of immiscible polymer blends. Macromolecules 30, 54705475.CrossRefGoogle Scholar
Mo, C., Johnston, R., Navarini, L. & Ellero, M. 2021 Modeling the effect of flow-induced mechanical erosion during coffee filtration. Phys. Fluids 33, 093101.CrossRefGoogle Scholar
Moreno, N. & Ellero, M. 2021 Arbitrary flow boundary conditions in smoothed dissipative particle dynamics: a generalized virtual rheometer. Phys. Fluids 33, 012006.CrossRefGoogle Scholar
Moreno, N., Vignal, P., Li, J. & Calo, V.M. 2013 Multiscale modeling of blood flow: coupling finite elements with smoothed dissipative particle dynamics. Procedia Comput. Sci. 18, 25652574.CrossRefGoogle Scholar
Morii, Y. & Kawakatsu, T. 2021 Lagrangian multiscale simulation of complex flows. Phys. Fluids 33 (9), 093106.CrossRefGoogle Scholar
Müller, K., Fedosov, D.A. & Gompper, G. 2014 Margination of micro- and nano-particles in blood flow and its effect on drug delivery. Sci. Rep. 4 (1), 18.CrossRefGoogle ScholarPubMed
Murashima, T. & Taniguchi, T. 2010 Multiscale Lagrangian fluid dynamics simulation for polymeric fluid. J. Polym. Sci. B 48 (8), 886893.CrossRefGoogle Scholar
Öttinger, H.C. 2005 Beyond Equilibrium Thermodynamics. John Wiley and Sons.CrossRefGoogle Scholar
Öttinger, H.C., van den Brule, B.H.A.A. & Hulsen, M.A. 1997 Brownian configuration fields and variance reduced CONNFFESSIT. J. Non-Newtonian Fluid Mech. 70, 255261.CrossRefGoogle Scholar
Phillips, T.N. & Williams, A.J. 1999 Viscoelastic flow through a planar contraction using a semi-Lagrangian finite volume method. J. Non-Newtonian Fluid Mech. 87, 215246.CrossRefGoogle Scholar
Plimpton, S. 1995 Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 119.CrossRefGoogle Scholar
Ren, W. & Weinan, E. 2005 Heterogeneous multiscale method for the modeling of complex fluids and micro-fluidics. J. Comput. Phys. 204 (1), 126.CrossRefGoogle Scholar
Sato, T., Harada, K. & Taniguchi, T. 2019 Multiscale simulations of flows of a well-entangled polymer melt in a contraction-expansion channel. Macromolecules 52 (2), 547564.CrossRefGoogle Scholar
Sato, T. & Taniguchi, T. 2017 Multiscale simulations for entangled polymer melt spinning process. J. Non-Newtonian Fluid Mech. 241, 3442.CrossRefGoogle Scholar
Schieber, J. & Hütter, M. 2020 Multiscale modeling beyond equilibrium. Phys. Today 73, 3642.CrossRefGoogle Scholar
Seryo, N., Sato, T., Molina, J.J. & Taniguchi, T. 2020 Learning the constitutive relation of polymeric flows with memory. Phys. Rev. Res. 2, 033107.CrossRefGoogle Scholar
Simavilla, D.N. & Ellero, M. 2022 Mesoscopic simulations of inertial drag enhancement and polymer migration in viscoelastic solutions flowing around a confined array of cylinders. J. Non-Newtonian Fluid Mech. 305, 104811.CrossRefGoogle Scholar
Simavilla, D.N., Espanol, P. & Ellero, M. 2023 Non-affine motion and selection of slip coefficient in constitutive modeling of polymeric solutions using a mixed derivative. J. Rheol. 67, 253.CrossRefGoogle Scholar
Tadmor, E.B. & Miller, R.E. 2011 Modeling Materials: Continuum, Atomistic and Multiscale Techniques. Cambridge University Press.CrossRefGoogle Scholar
Tedeschi, F., Giusteri, G.G., Yelash, L., Lukácová-Medvid'ová, M., Tedeschi, F., Giusteri, G.G., Yelash, L. & Lukácová-Medvid'ová, M. 2021 A multi-scale method for complex flows of non-Newtonian fluids. Maths Engng 4 (6), 122.Google Scholar
Vázquez-Quesada, A., Ellero, M. & Español, P. 2009 Consistent scaling of thermal fluctuations in smoothed dissipative particle dynamics. J. Chem. Phys. 130 (3), 034901.CrossRefGoogle ScholarPubMed
Wapperom, P., Keunings, R. & Legat, V. 2000 The backward-tracking Lagrangian particle method for transient viscoelastic flows. J. Non-Newtonian Fluid Mech. 91 (2–3), 273295.CrossRefGoogle Scholar
Xu, X. & Yu, P. 2016 A multiscale SPH method for simulating transient viscoelastic flows using bead-spring chain model. J. Non-Newtonian Fluid Mech. 229, 2742.CrossRefGoogle Scholar
Yang, J.Z., Wu, X. & Li, X. 2012 A generalized Irving–Kirkwood formula for the calculation of stress in molecular dynamics models. J. Chem. Phys. 137 (13), 134104.CrossRefGoogle ScholarPubMed
Yasuda, S. & Yamamoto, R. 2008 A model for hybrid simulations of molecular dynamics and computational fluid dynamics. Phys. Fluids 20, 113101.CrossRefGoogle Scholar
Yasuda, S. & Yamamoto, R. 2014 Synchronized molecular-dynamics simulation via macroscopic heat and momentum transfer: an application to polymer lubrication. Phys. Rev. X 4, 110.Google Scholar
Ye, T., Shi, H., Phan-Thien, N. & Lim, C.T. 2020 The key events of thrombus formation: platelet adhesion and aggregation. Biomech. Model. Mechanobiol. 19, 943955.CrossRefGoogle ScholarPubMed
Zhang, G.M. & Batra, R.C. 2004 Modified smoothed particle hydrodynamics method and its application to transient problems. Comput. Mech. 34, 137146.CrossRefGoogle Scholar
Zhao, L., Li, Z., Caswell, B., Ouyang, J. & Karniadakis, G.E. 2018 Active learning of constitutive relation from mesoscopic dynamics for macroscopic modeling of non-Newtonian flows. J. Comput. Phys. 363, 116127.CrossRefGoogle Scholar
Zhu, G., Rezvantalab, H., Hajizadeh, E., Wang, X. & Larson, R.G. 2016 Stress-gradient-induced polymer migration: perturbation theory and comparisons to stochastic simulations. J. Rheol. 60, 327.CrossRefGoogle Scholar
Zimmerman, J.A., Jones, R.E. & Templeton, J.A. 2010 A material frame approach for evaluating continuum variables in atomistic simulations. J. Comput. Phys. 229, 23642389.CrossRefGoogle Scholar
Zimon, M.J., Reese, J.M. & Emerson, D.R. 2016 A novel coupling of noise reduction algorithms for particle flow simulations. J. Comput. Phys. 321, 169190.CrossRefGoogle Scholar