Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-19T18:15:17.707Z Has data issue: false hasContentIssue false

Galerkin representations and fundamental solutions for an axisymmetric microstretch fluid flow

Published online by Cambridge University Press:  25 January 2009

H. H. SHERIEF
Affiliation:
Department of Mathematics, Faculty of Science, University of Alexandria, Alexandria, Egypt
M. S. FALTAS
Affiliation:
Department of Mathematics, Faculty of Science, University of Alexandria, Alexandria, Egypt
E. A. ASHMAWY*
Affiliation:
Department of Mathematics, Faculty of Science, University of Alexandria, Alexandria, Egypt
*
Email address for correspondence: [email protected]

Abstract

The method of associated matrices is used to obtain Galerkin type representations. Fundamental solutions are then obtained for the cases of a point body couple and a point microstretch force. A formula for calculating the total couple acting on a rigid body rotating axi-symmetrically in a microstretch fluid is deduced. A generalized reciprocal theorem is deduced. An application for a rigid sphere rotating in a microstretch fluid is discussed. The results of the application are represented graphically.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ariman, T. 1970 Fluids with microstretch. Rheologica Acta 9, 542549.CrossRefGoogle Scholar
Ariman, T. 1971 On the analysis of blood flow. J. Biomech. 4, 185191.CrossRefGoogle ScholarPubMed
Basset, A. B. 1961 A Treatise on Hydrodynamics, vol. 2. Dover.Google Scholar
Bird, R., Armstrong, R. & Hassager, O. 1987 Dynamics of Polymeric Liquids. John Wiley.Google Scholar
Bor-Kucukatay, M., Kucukatay, V., Agar, A. & Baskurt, O. 2005 Effect of sulfite on red blood cell deformability ex vivo and in normal and sulfite oxidase-deficient rats in vivo, Arch. Toxicol 79, 542546.CrossRefGoogle ScholarPubMed
Chowdhury, K. L. & Glockner, P. G. 1974 Representations in elastic dielectrics. Intl J. Engng Sci. 12, 597606.CrossRefGoogle Scholar
Eringen, A. C. 1964 Simple microfluids. Intl J. Engng Sci. 2, 205218.CrossRefGoogle Scholar
Eringen, A. C. 1998 Microcontinuum Field Theories, vols. I and II. Springer.Google Scholar
Faltas, M. S. & Saad, E. I. 2005 Stokes flow with slip caused by the axisymmetric motion of a sphere bisected by a free surface bounding a semi-infinite micropolar fluid. Intl J. Engng Sci. 43, 953976.CrossRefGoogle Scholar
Gayen, B. & Alam, M. 2006 Algebraic and exponential instabilities in a sheared micropolar granular fluid. J. Fluid Mech. 567, 195233.CrossRefGoogle Scholar
Goldhirsch, I., Noskowicz, S. H. & Bar-Lev, O. 2005 Nearly smooth granular gases. Phys. Rev. Lett. 95, 14.CrossRefGoogle ScholarPubMed
Hayakawa, H. 2000 Slow viscous flows in micropolar fluids. Phys. Rev. E 61, 54775492.Google ScholarPubMed
Hoffmann, K., Marx, D. & Botkin, N. 2007 Drag on spheres in micropolar fluids with non-zero boundary conditions for microrotations. J. Fluid Mech. 590, 319330.CrossRefGoogle Scholar
Ieşan, D. 1997 Uniqueness results in the theory of microstretch fluid. Intl J. Engng Sci. 35, 669679.CrossRefGoogle Scholar
Kröger, M. 2004 Simple models for complex nonequilibrium fluids. Phys. Rep. 390, 453551.CrossRefGoogle Scholar
Lamb, H. 1974 Hydrodynamics. Cambridge University Press.Google Scholar
Lukaszewicz, G. 1999 Micropolar Fluids: Theory and Applications. Birkhauser.CrossRefGoogle Scholar
Mitarai, N., Hayakawa, H. & Nakanishi, H. 2002 Collisional granular flow as a micropolar fluid. Phys. Rev. Lett. 88, 174301174304.CrossRefGoogle ScholarPubMed
Muldowney, G. P., & Higdon, J. J. L. 1995 A spectral boundary element approach to three-dimensional Stokes flow. J. Fluid Mech. 298, 167192.CrossRefGoogle Scholar
Nagasawa, T. 1981 Deformation of transforming red cells in various pH solutions. Experientia 37, 977978.CrossRefGoogle ScholarPubMed
Narasimhan, M. N. L. 2003 A mathematical model of pulsatile flows of microstretch fluids in circular tubes. Intl J. Engng Sci. 41, 231247.CrossRefGoogle Scholar
Parvathamma, S. & Devanathan, R. 1983 Microcontinuum approach for blood flow through a tube with stenosis, Proc. 1st Intl Conf. of Physio. Fluid Dynamics (ed. Nigam, S. D. & Singh, M.), pp. 69–73, Madras, India.Google Scholar
Power, H. 1995 Boundary Element Applications in Fluid Mechanics. Computational Mechanics.Google Scholar
Ramkissoon, H. 1975 Fundamental solutions and some flow problems in micropolar fluid. PhD thesis, University of Calgary, Canada.Google Scholar
Ramkissoon, H. 1977 Slow steady rotation of an axially symmetric body in a micropolar fluid. Appl. Sci. Res. 33 243257.CrossRefGoogle Scholar
Ramkissoon, H. 1978 Drag in couple stress fluids. ZAMP 29, 341345.Google Scholar
Ramkissoon, H. & Majumdar, S. R. 1976 Drag on an axially symmetric body in the Stokes' flow of micropolar fluid. Phys. Fluids 19, 1621.CrossRefGoogle Scholar
Rogausch, H. 1976 Time-dependent reaction of human red cell deformability on sphering agents. Pfliigers Arch. 362, 121126.CrossRefGoogle ScholarPubMed
Sandru, N. 1966 On some problems of the linear theory of the asymmetric elasticity, Intl J. Engng Sci. 4, 8193.CrossRefGoogle Scholar
Sherief, H., Faltas, M. & Saad, E. 2008 Slip at the surface of a sphere translating perpendicular to a plane wall in micropolar fluid. ZAMP 59, 293312.Google Scholar
Skalak, R. & Tzeren, A. 1981 Continuum theories of blood flow. In Continuum Models of Discrete Systems, (ed. Bruetein, O. & Hsieh, R. K. T.), vol. 4, pp. 189206, North-Holland.Google Scholar