Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T12:55:12.040Z Has data issue: false hasContentIssue false

A furtive stare at an intra-cellular flow

Published online by Cambridge University Press:  23 December 2009

T. M. SQUIRES*
Affiliation:
Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Rarely do intra-cellular flows amount to much: cells are small, and so are their Reynolds numbers. The extraordinarily large cells of the Characean algae provide a fascinating counter-example, as their geometry precludes the standard methods of distributing food and waste. van de Meent et al. (J. Fluid Mech., 2010, this issue, vol. 642, pp. 5–14) present nuclear magnetic resonance (NMR) velocimetry measurements of the fluid flow within individual living cells, which agree quantitatively with their fluid mechanical model and confirm a long-standing hypothesis. In addition to biomimetic parallels with microfluidic labs on chips, this work showcases NMR velocimetry as an under-appreciated but immensely powerful technique. The non-invasive tracer-free high-resolution flow measurements it enables – even in opaque and heterogeneous fluids – should find wide application.

Type
Focus on Fluids
Copyright
Copyright © Cambridge University Press 2010

References

Bechert, D. W., Bruse, M., Hage, W. & Meyer, R. 2000 Fluid mechanics of biological surfaces and their technological application. Naturwissenschaften 87 (4), 157171.CrossRefGoogle ScholarPubMed
Bush, J. W. M. & Hu, D. L. 2006 Walking on water: biolocomotion at the interface. Annu. Rev. Fluid Mech. 38, 339369.CrossRefGoogle Scholar
Bonn, D., Rodts, S., Groenink, M., Rafai, S., Shahidzadeh-Bonn, N. & Coussot, P. 2006 Some applications of magnetic resonance imaging in fluid mechanics: complex flows and complex fluids. Annu. Rev. Fluid Mech. 40, 209233.CrossRefGoogle Scholar
Callaghan, P. T. 1999 Rheo-NMR: nuclear magnetic resonance and the rheology of complex fluids. Rep. Progr. Phys. 62 (4), 599670.CrossRefGoogle Scholar
Degre, G., Joseph, P., Tabeling, P., Lerouge, S., Cloitre, M. & Ajdari, A. 2006 Rheology of complex fluids by particle image velocimetry in microchannels. Appl. Phys. Lett. 89 (2), 024104.CrossRefGoogle Scholar
Glasheen, J. W. & McMahon, T. A. 1996 A hydrodynamic model of locomotion in the basilisk lizard. Nature 380 (6572), 340342.CrossRefGoogle Scholar
Goldstein, R. E., Tuval, I. & van de Meent, J. W. 2008 Microfluidics of cytoplasmic streaming and its implications for intracellular transport. Proc. Natl Acad. Sci. USA 105 (10), 36633667.CrossRefGoogle ScholarPubMed
Ismagilov, R. F., Stroock, A. D., Kenis, P. J. A., Whitesides, G. & Stone, H. A. 2000 Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels. Appl. Phys. Lett. 76, 23762378.CrossRefGoogle Scholar
Lauga, E. & Powers, T. R. 2009 The hydrodynamics of swimming microorganisms. Rep. Progr. Phys. 72 (9), 096601.CrossRefGoogle Scholar
McMahon, T. A. & Bonner, J. T. 1983 On Size and Life. Scientific American Library.Google Scholar
van de Meent, J. W., Sederman, A. J., Gladden, L. F. & Goldstein, R. E. 2010 Measurement of cytoplasmic streaming in single plant cells by magnetic resonance velocimetry. J. Fluid Mech. 642, 514.CrossRefGoogle Scholar
van de Meent, J. W., Tuval, I. & Goldstein, R. E. 2008 Nature's microfluidic transporter: rotational cytoplasmic streaming at high Péclet numbers. Phys. Rev. Lett. 101 (17), 178102.CrossRefGoogle ScholarPubMed
Pipe, C. J. & McKinley, G. H. 2009 Microfluidic rheometry. Mech. Res. Commun. 36 (1), 110120.CrossRefGoogle Scholar
Purcell, E. M. 1977 Life at low Reynolds number. Am. J. Phys. 45 (1), 311.CrossRefGoogle Scholar
Squires, T. M. & Quake, S. R. 2005 Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77 (3), 9771026.CrossRefGoogle Scholar
Stone, H. A., Stroock, A. D. & Ajdari, A. 2004 Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381411.CrossRefGoogle Scholar
Stroock, A. D., Dertinger, S. K. W., Ajdari, A., Mezic, I., Stone, H. A. & Whitesides, G. M. 2002 Chaotic mixer for microchannels. Science 295 (5555), 647651.CrossRefGoogle ScholarPubMed
Vogel, S. 1988 Life's Devices. Princeton University Press.Google Scholar
Wang, Z. J. 2005 Dissecting insect flight. Annu. Rev. Fluid Mech. 37, 183210.CrossRefGoogle Scholar
Wheeler, T. D. & Stroock, A. D. 2008 The transpiration of water at negative pressures in a synthetic tree. Nature 455 (7210), 208212.CrossRefGoogle Scholar