Hostname: page-component-5f745c7db-rgzdr Total loading time: 0 Render date: 2025-01-06T20:35:11.471Z Has data issue: true hasContentIssue false

Fundamental equations for primary fluid recovery from porous media

Published online by Cambridge University Press:  04 December 2018

Yan Jin
Affiliation:
State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum–Beijing, Beijing 102249, China
Kang Ping Chen*
Affiliation:
School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287-6106, USA
*
Email address for correspondence: [email protected]

Abstract

Primary fluid recovery from a porous medium is driven by the volumetric expansion of the in situ fluid. For production from a petroleum reservoir, primary recovery accounts for more than half of the total amount of recovered hydrocarbon. The primary recovery process is studied here at the pore scale and the macroscopic scale. The pore-scale flow is first analysed using the compressible Navier–Stokes equations and the mathematical theory for low-Mach-number flow developed by Klainerman & Majda (Commun. Pure Appl. Maths, vol. 34 (4), 1981, pp. 481–524; vol. 35 (5), 1982, pp. 629–651). An asymptotic analysis shows that the pore-scale flow is governed by the self-diffusion of the fluid and it exhibits a slip-like mass flow rate, even though the velocity satisfies the no-slip condition on the pore wall. The pore-scale density equation is then upscaled to a macroscopic diffusion equation for the density which possesses a diffusion coefficient proportional to the fluid’s kinematic viscosity. Darcy’s law is shown to be inapplicable to primary fluid recovery and it should be replaced by a new mass flux equation which depends on the porosity but not on the permeability. This is in stark contrast to the classical result and it can have important implications for hydrocarbon recovery as well as other applications.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alazard, T. 2006 Low Mach number limit of the full Navier–Stokes equations. Arch. Rat. Mech. Anal. 180 (1), 173.Google Scholar
Anderson, J. D. Jr 1995 Computational Fluid Dynamics. McGraw-Hill.Google Scholar
Aris, R. 1989 Vectors, Tensors, and the Basic Equations of Fluid Mechanics. Dover.Google Scholar
Auriault, J. L. 1987 Nonsaturated deformable porous media: quasistatics. Trans. Porous Med. 2, 405464.Google Scholar
Bailly, C., Bogey, C. & Juve, D. 1999 Computation of flow noise using source terms in linearized Euler equations. AIAA J. 37, 409416.Google Scholar
Bear, J. 1972 Dynamics of Fluids in Porous Media. American Elsevier.Google Scholar
Benitez-Olivares, G., Valdes-Parada, F. & Saucedo-Castaneda, J. 2016 Derivation of an upscaled model for mass transfer and reaction for non-food starch conversion to bioethanol. Intl J. Chem. Reactor Engng 14 (6), 11151148.Google Scholar
Bijl, H. & Wesseling, P. 1998 A unified method for computing incompressible and compressible flows in boundary-fitted coordinates. J. Comput. Phys. 141, 153173.Google Scholar
Chen, K. P. & Shen, D. 2018a Drainage flow of a viscous compressible fluid from a small capillary with a sealed end. J. Fluid Mech. 839, 621643.Google Scholar
Chen, K. P. & Shen, D. 2018b Mechanism of fluid production from the nanopores of shale. Mech. Res. Commun. 88, 3439.Google Scholar
COMSOL. 2016 Multiphysics® Modeling Software. COMSOL, Burlington, MA. www.comsol.com.Google Scholar
Cramer, M. S. 2012 Numerical estimates for the bulk viscosity of ideal gases. Phys. Fluids 24, 066102.Google Scholar
Dake, L. P. 1978 Fundamentals of Reservoir Engineering. Elsevier.Google Scholar
Danchin, R. 2001 Global existence in critical spaces for flows of compressible viscous and heat-conductive gases. Arch. Rat. Mech. Anal. 160 (1), 139.Google Scholar
Danchin, R. 2002 Zero Mach number limit in critical spaces for compressible Navier–Stokes equations. Ann. Sci. École Norm. Sup. 35 (1), 2775.Google Scholar
Danchin, R. 2005 Low Mach number limit for viscous compressible flows. Math. Modeling Numer. Anal. 39 (3), 459475.Google Scholar
Darcy, H. 1856 Les Fontaines Publiques de la Ville de Dijon. Librairie des Corps Impériaux des Ponts et Chaussées et des Mines.Google Scholar
Desjardins, B. & Grenier, E. 1999 Low Mach number limit of viscous compressible flows in the whole space. Proc. R. Soc. Lond. A 455 (1986), 22712279.Google Scholar
Desjardins, B., Grenier, E., Lions, P.-L. & Masmoudi, N. 1999 Incompressible limit for solutions of the isentropic Navier–Stokes equations with Dirichlet boundary conditions. J. Math. Pures Appl. 78 (5), 461471.Google Scholar
Desjardins, B. & Lin, C.-K. 1999 A survey of the compressible Navier–Stokes equations. Taiwanese J. Math. 3 (2), 123137.Google Scholar
Ebin, D. G. 1977 The motion of slightly compressible fluids viewed as a motion with strong constraining force. Ann. Math. 105 (1), 141200.Google Scholar
Ebin, D. G. 1982 Motion of slightly compressible fluids in a bounded domain. Part I. Commun. Pure Appl. Maths 35 (4), 451485.Google Scholar
Feireisl, E. & Novotny, A. 2009 Singular Limits in Thermodynamics of Viscous Fluids. Birkhäuser.Google Scholar
Friend, J. & Yeo, L. Y. 2011 Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev. Mod. Phys. 83 (4), 647704.Google Scholar
Hirschfelder, J. O., Curtiss, C. F. & Bird, R. B. 1954 Molecular Theory of Gases and Liquids. Wiley.Google Scholar
Keller, J. B. 1980 Darcy’s law for flow in porous media and the two-space method. In Nonlinear Partial Differential Equations in Engineering and Applied Science (ed. Sternberg, R. L., Kalinowski, A. J. & Papadakis, J. S.), vol. 54, pp. 429443. Dekker.Google Scholar
Klainerman, S. & Majda, A. 1981 Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Maths 34 (4), 481524.Google Scholar
Klainerman, S. & Majda, A. 1982 Compressible and incompressible fluids. Commun. Pure Appl. Maths 35 (5), 629651.Google Scholar
Klein, R. 1995 Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics. Part I. One-dimensional flow. J. Comput. Phys. 121 (2), 213237.Google Scholar
Klein, R., Botta, N., Schneider, T., Munz, C. D., Roller, S., Meister, A., Hoffmann, L. & Sonar, T. 2001 Asymptotic adaptive methods for multi-scale problems in fluid mechanics. J. Engng Maths 39 (1–4), 261343.Google Scholar
Klein, R. & Munz, C. D. 1995 The multiple pressure variables (MPV) for the numerical approximation of weakly compressible fluid flow. In Proceedings of Numerical Modelling in Continuum Mechanics. Charles University.Google Scholar
Lagerstrom, P. A., Cole, J. D. & Trilling, L. 1949 Problems in the Theory of Viscous Compressible Fluids (Monograph). California Institute of Technology.Google Scholar
Lasseux, D. & Valdes Parada, F. J. 2017 On the development of Darcy’s law to include inertial and slip effects. C. R. Méc. 345, 660669.Google Scholar
Lasseux, D., Valdes Parada, F. J., Ochoa Tapia, J. A. & Goyeau, B. 2014 A macroscopic model for slightly compressible gas slip-flow in homogeneous porous media. Phys. Fluids 26, 053102.Google Scholar
Lasseux, D., Valdes Parada, F. J. & Porter, M. L. 2016 An improved macroscopic model for gas slip flow in porous media. J. Fluid Mech. 805, 118146.Google Scholar
Leal, L. G. 2010 Advanced Transport Phenomena. Cambridge University Press.Google Scholar
Lions, J. L. & Masmoudi, N. 1998 Incompressible limit for a viscous compressible limit. J. Math. Pures Appl. 77 (6), 585627.Google Scholar
Lugo-Mendez, H. D., Valdes-Parada, F. J., Porter, M. L., Wood, B. D. & Ochoa-Tapia, J. A. 2015 Upscaling diffusion and nonlinear reactive mass transport in homogeneous porous media. Trans. Porous Med. 107 (3), 683716.Google Scholar
Masmoudi, N. 2000 Asymptotic problems and compressible and incompressible limits. In Advances in Mathematical Fluid Mechanics (ed. Málek, J., Nečas, J. & Rokyta, M.), pp. 119158. Springer.Google Scholar
Masmoudi, N. 2002 Homogenization of the compressible Navier–Stokes equations in a porous medium. ESAIM: Control Optim. Calculus Variations 8, 885906.Google Scholar
Masmoudi, N. 2007 Examples of singular limits in hydrodynamics. In Handbook of Differential Equations: Evolutionary Equations (ed. Dafermos, C. M. & Feireisl, E.), vol. 3, pp. 195275. Elsevier.Google Scholar
Morse, P. M. & Ingard, K. U. 1968 Theoretical Acoustics. McGraw-Hill.Google Scholar
Munz, C. D., Dumbser, M. & Rolle, S. 2007 Linearized acoustic perturbation equations for low Mach number flow with variable density and temperature. J. Comput. Phys. 224, 352364.Google Scholar
Munz, C. D., Roller, S., Klein, R. & Geratz, K. J. 2003 The extension of incompressible flow solvers to the weakly compressible regime. Comput. Fluids 32, 173196.Google Scholar
Muskat, M. 1937 The Flow of Homogeneous Fluids Through Porous Media. McGraw-Hill.Google Scholar
Muskat, M. 1949 Physical Principles of Oil Production. McGraw-Hill.Google Scholar
Panton, R. L. 2013 Incompressible Flow, 4th edn. Wiley.Google Scholar
Pierce, A. D. 1981 Acoustics: An Introduction to Its Physical Principles and Applications. McGraw-Hill.Google Scholar
Rayleigh, Lord (J. W. Strutt) 1945 The Theory of Sound, vol. 2. Dover.Google Scholar
Santos-Sanchez, R., Valdes-Parada, F. J. & Chirino, Y. I. 2016 Upscaling diffusion and reaction processes in multicellular systems considering different cell populations. Chem. Engng Sci. 142 (13), 144164.Google Scholar
Scheidegger, A. E. 1974 The Physics of Flow through Porous Media. University of Toronto Press.Google Scholar
Schochet, S. 1987a Hyperbolic–hyperbolic singular limits. Commun. Part. Diff. Equ. 12 (6), 589632.Google Scholar
Schochet, S. 1987b Singular limits in bounded domains for quasilinear symmetric hyperbolic systems having a vorticity equation. J. Differ. Equ. 68 (3), 400428.Google Scholar
Schochet, S. 2005 The mathematical theory of low Mach number flows. Math. Modeling Numer. Anal. 39 (3), 441458.Google Scholar
Temkin, S. 1981 Elements of Acoustics. Wiley.Google Scholar
Valdes-Parada, F. J. & Aguilar-Madera, C. G. 2011 Upscaling mass transport with homogeneous and heterogeneous reaction in porous media. Chem. Engng 24, 14531458.Google Scholar
Valdes-Parada, F. J., Aguilar-Madera, C. G. & Alvarez-Ramirez, J. 2011 On diffusion, dispersion and reaction in porous media. Chem. Engng Sci. 66 (10), 21772190.Google Scholar
Valdes-Parada, F. J., Lasseux, D. & Whitaker, S. 2017 Diffusion and heterogeneous reaction in porous media: the macroscale model revisited. Intl J. Chem. Reactor Engng 15 (6), 2430.Google Scholar
Valdes-Parada, F. J., Porter, M. L., Narayanaswamy, K., Ford, R. M. & Wood, B. D. 2009 Upscaling microbial chemotaxis in porous media. Adv. Water Resour. 32 (9), 14131428.Google Scholar
Wesseling, P. 2001 Principles of Computational Fluid Dynamics. Springer.Google Scholar
Whitaker, S. 1966 The equations of motion in porous media. Chem. Engng Sci. 21 (3), 291300.Google Scholar
Whitaker, S. 1986 Flow in porous media. Part I. A theoretical derivation of Darcy’s law. Trans. Porous Med. 1, 325.Google Scholar
Whitaker, S. 1999 The Method of Volume Averaging. Kluwer Academic.Google Scholar
Wood, B. D. & Whitaker, S. 1997 Diffusion and reaction in biofilms. Chem. Engng Sci. 53 (3), 397425.Google Scholar
Wood, B. D. & Whitaker, S. 1999 Multi-species diffusion and reaction in biofilms and cellular media. Chem. Engng Sci. 55 (17), 33973418.Google Scholar
Wu, T. Y. 1956 Small perturbations in the unsteady flow of a compressible, viscous and heat conducting fluid. J. Math. Phys. 35, 1327.Google Scholar