Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-21T11:27:05.098Z Has data issue: false hasContentIssue false

Frontal geostrophic adjustment and nonlinear wave phenomena in one-dimensional rotating shallow water. Part 2. High-resolution numerical simulations

Published online by Cambridge University Press:  24 August 2004

F. BOUCHUT
Affiliation:
Département de Mathématiques et Applications, Ecole Normale Supérieure, France
J. LE SOMMER
Affiliation:
Laboratoire de Météorologie Dynamique, Ecole Normale Supérieure, France
V. ZEITLIN
Affiliation:
Laboratoire de Météorologie Dynamique, Ecole Normale Supérieure, France

Abstract

High-resolution shock-capturing finite-volume numerical methods are applied to investigate nonlinear geostrophic adjustment of rectilinear fronts and jets in the rotating shallow-water model. Numerical experiments for various jet/front configurations show that for localized initial conditions in the open domain an adjusted state is always attained. This is the case even when the initial potential vorticity (PV) is not positive-definite, the situation where no proof of existence of the adjusted state is available. Adjustment of the vortex, PV-bearing, part of the flow is rapid and is achieved within a couple of inertial periods. However, the PV-less low-energy quasi-inertial oscillations remain for a long time in the vicinity of the jet core. It is demonstrated that they represent a long-wave part of the initial perturbation and decay according to the standard dispersion law ${\sim}t^{-1/2}$. For geostrophic adjustment in a periodic domain, an exact periodic nonlinear wave solution is found to emerge spontaneously during the evolution of wave perturbations allowing us to conjecture that this solution is an attractor. In both cases of adjustment in open and periodic domains, it is shown that shock-formation is ubiquitous. It takes place immediately in the jet core and, thus, plays an important role in fully nonlinear adjustment. Although shocks dissipate energy effectively, the PV distribution is not changed owing to the passage of shocks in the case of strictly rectilinear flows.

Type
Papers
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)