Hostname: page-component-f554764f5-rvxtl Total loading time: 0 Render date: 2025-04-21T11:06:52.379Z Has data issue: false hasContentIssue false

Fragmentation from inertial detachment of a sessile droplet: implications for pathogen transport

Published online by Cambridge University Press:  26 December 2024

N. Shen
Affiliation:
The Fluid Dynamics of Disease Transmission Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Y. Kulkarni
Affiliation:
Sorbonne Université and CNRS UMR 7190, Institut Jean le Rond d'Alembert, 75005 Paris, France
T. Jamin
Affiliation:
The Fluid Dynamics of Disease Transmission Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
S. Popinet
Affiliation:
Sorbonne Université and CNRS UMR 7190, Institut Jean le Rond d'Alembert, 75005 Paris, France
S. Zaleski
Affiliation:
Sorbonne Université and CNRS UMR 7190, Institut Jean le Rond d'Alembert, 75005 Paris, France Institut Universitaire de France, 75231 Paris, France
L. Bourouiba*
Affiliation:
The Fluid Dynamics of Disease Transmission Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
*
Email address for correspondence: [email protected]

Abstract

Fragmentation of a fluid body into droplets underlies many contamination and disease transmission processes where pathogens are transported in a liquid phase. An important class of such processes involves formation of a fluid ligament and its destabilization into droplets. Inertial detachment (Gilet & Bourouiba, J. R. Soc. Interface, vol. 12, 2015, 20141092) is one of these modes: upon impact on a sufficiently compliant substrate, the substrate's motion can transfer its impulse to a contaminated sessile drop residing on it. The fragmentation of the sessile drop is efficient at producing contaminated ejected droplets with little dilution. Inertial detachment, particularly from substrates of intermediate wetting, is also interesting as a fundamental fragmentation process on its own merit, involving the asymmetric stretching of the sessile drop under impulsive axial forcing with one-sided pinning due to the substrate's intermediate wetting. Our experiments show that the radius, $R_{tip}$, of the tip drop ejected become insensitive to the Bond number value for $Bo>1$. Here, $Bo$ quantifies the inertial effects via the relative axial impulsive acceleration compared with capillarity. The time, $t_{tip}$, of tip-drop breakup is also insensitive to $Bo$. Combining experiments, theory and validated numerics, we decipher the selection of $R_{tip}$ and its sensitivity to the surface-wetting and substrate foot dynamics. Using asymptotic theory in the large $Bo$ limit for which the thin-film/slender-jet approximations hold, we derive a reduced physical model that predicts $R_{tip}$ consistent with our experiments. Finally, we discuss how pathogen physical properties (e.g. wetting and buoyancy) within the sessile drop determine their distribution in the tip and secondary fragmentation droplets.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Afkhami, S., Zaleski, S. & Bussmann, M. 2009 A mesh-dependent model for applying dynamic contact angles to VOF simulations. J. Comput. Phys. 228 (15), 53705389.CrossRefGoogle Scholar
Ambravaneswaran, B., Wilkes, E.D. & Basaran, O.A. 2002 Drop formation from a capillary tube: comparison of one-dimensional and two-dimensional analyses and occurrence of satellite drops. Phys. Fluids 14 (8), 26062621.CrossRefGoogle Scholar
Arrufat, T., Crialesi-Esposito, M., Fuster, D., Ling, Y., Malan, L., Pal, S., Scardovelli, R., Tryggvason, G. & Zaleski, S. 2021 A mass-momentum consistent, volume-of-fluid method for incompressible flow on staggered grids. Comput. Fluids 215, 104785.CrossRefGoogle Scholar
Bostwick, J.B. & Steen, P.H. 2015 Stability of constrained capillary surfaces. Annu. Rev. Fluid Mech. 47 (1), 539568.CrossRefGoogle Scholar
Boucher, E.A., Evans, M.J.B. & Kent, H.J. 1976 Capillary phenomena. II. Equilibrium and stability of rotationally symmetric fluid bodies. Proc. R. Soc. A 349 (1656), 81100.Google Scholar
Boucher, E.A. & Kent, H.J. 1978 Capillary phenomena VII. Equilibrium and stability of pendent drops. J. Colloid Interface Sci. 67 (1), 1015.CrossRefGoogle Scholar
Bourouiba, L. 2021 a The fluid dynamics of disease transmission. Annu. Rev. Fluid Mech. 53, 473508.CrossRefGoogle Scholar
Bourouiba, L. 2021 b Fluid dynamics of respiratory infectious diseases. Annu. Rev. Biomed. Engng 23 (1), 547577.CrossRefGoogle ScholarPubMed
Brenner, M.P., Eggers, J., Joseph, K., Nagel, S.R. & Shi, X.D. 1997 Breakdown of scaling in droplet fission at high Reynolds number. Phys. Fluids 9 (6), 15731590.CrossRefGoogle Scholar
Castrejón-Pita, A.A., Castrejón-Pita, J.R. & Hutchings, I.M. 2012 Breakup of liquid filaments. Phys. Rev. Lett. 108 (7), 074506.CrossRefGoogle ScholarPubMed
Contò, F.P., Marín, J.F., Antkowiak, A., Castrejón-Pita, J.R. & Gordillo, L. 2019 Shape of a recoiling liquid filament. Sci. Rep. 9 (1), 18.CrossRefGoogle ScholarPubMed
Day, R.F., Hinch, E.J. & Lister, J.R. 1998 Self-similar capillary pinchoff of an inviscid fluid. Phys. Rev. Lett. 80 (4), 704.CrossRefGoogle Scholar
Derby, B. 2010 Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu. Rev. Mater. Res. 40 (1), 395414.CrossRefGoogle Scholar
Dussan V., E.B. & Davis, S.H. 1974 On the motion of a fluid–fluid interface along a solid surface. J. Fluid Mech. 65 (1), 7195.CrossRefGoogle Scholar
Eggers, J. 1993 Universal pinching of 3D axisymmetric free-surface flow. Phys. Rev. Lett. 71 (21), 34583460.CrossRefGoogle ScholarPubMed
Eggers, J. 1995 Theory of drop formation. Phys. Fluids 7 (5), 941953.CrossRefGoogle Scholar
Eggers, J. & Dupont, T.F. 1994 Drop formation in a one-dimensional approximation of the Navier–Stokes equation. J. Fluid Mech. 262, 205221.CrossRefGoogle Scholar
Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71 (3), 036601.CrossRefGoogle Scholar
Faulwetter, R.C. 1917 Dissemination of the angular leaf spot of cotton. J. Agric. Res. 8, 457475.Google Scholar
Fitt, B.D.L., McCartney, H.A. & Walklate, P.J. 1989 The role of rain in dispersal of pathogen inoculum. Annu. Rev. Phytopathol. 27, 241270.CrossRefGoogle Scholar
Frankel, I. & Weihs, D. 1985 Stability of a capillary jet with linearly increasing axial velocity (with application to shaped charges). J. Fluid Mech. 155, 289307.CrossRefGoogle Scholar
Fullana, T. 2022 Simulation and optimization of complex phenomena in multiphase flows. PhD thesis, Sorbonne University.Google Scholar
Gaudet, S., McKinley, G.H. & Stone, H.A. 1996 Extensional deformation of Newtonian liquid bridges. Phys. Fluids 8 (10), 25682579.CrossRefGoogle Scholar
Gilet, T. & Bourouiba, L. 2014 Rain-induced ejection of pathogens from leaves: revisiting the hypothesis of splash-on-film using high-speed visualization. Integr. Comp. Biol. 54, 974984.CrossRefGoogle ScholarPubMed
Gilet, T. & Bourouiba, L. 2015 Fluid fragmentation shapes rain-induced foliar disease transmission. J. R. Soc. Interface 12, 20141092.CrossRefGoogle ScholarPubMed
Gilet, T. & Bourouiba, L. 2017 La physique de la pluie conditionne la propagation des maladies en agriculture. Reflets Phys. 54, 49.CrossRefGoogle Scholar
Gopinathan, J. & Noh, I. 2018 Recent trends in bioinks for 3D printing. Biomater. Res. 22, 115.CrossRefGoogle ScholarPubMed
Gregory, P.H. 1973 Microbiology of the Atmosphere. Leonhard Hill.Google Scholar
Gregory, P.H., Guthrie, E.J. & Bunce, M.E. 1959 Experiments on splash dispersal of fungus spores. Microbiology 20, 328354.Google ScholarPubMed
Henderson, D., Segur, H., Smolka, L.B. & Wadati, M. 2000 The motion of a falling liquid filament. Phys. Fluids 12 (3), 550565.CrossRefGoogle Scholar
Huh, C. & Scriven, L.E. 1971 Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35 (1), 85101.CrossRefGoogle Scholar
Lejeune, S., Gilet, T. & Bourouiba, L. 2018 Edge effect: liquid sheet and droplets formed by drop impact close to an edge. Phys. Rev. Fluids 3, 083601.CrossRefGoogle Scholar
Leppinen, D. & Lister, J.R. 2003 Capillary pinch-off in inviscid fluids. Phys. Fluids 15 (2), 568578.CrossRefGoogle Scholar
Lister, J.R. & Stone, H.A. 1998 Capillary breakup of a viscous thread surrounded by another viscous fluid. Phys. Fluids 10 (11), 27582764.CrossRefGoogle Scholar
Lubarda, V.A. & Talke, K.A. 2011 Analysis of the equilibrium droplet shape based on an ellipsoidal droplet model. Langmuir 27 (17), 1070510713.CrossRefGoogle Scholar
Marmottant, P. & Villermaux, E. 2004 Fragmentation of stretched liquid ligaments. Phys. Fluids 16 (8), 27322741.CrossRefGoogle Scholar
Notz, P.K. & Basaran, O.A. 2004 Dynamics and breakup of a contracting liquid filament. J. Fluid Mech. 512, 223256.CrossRefGoogle Scholar
Padday, J.F., Pitt, A.R. & Tabor, D. 1973 The stability of axisymmetric menisci. Phil. Trans. R. Soc. Lond. A 275 (1253), 489528.Google Scholar
Papageorgiou, D.T. & Orellana, O. 1998 Study of cylindrical jet breakup using one-dimensional approximations of the Euler equations. SIAM J. Appl. Maths 59 (1), 286317.CrossRefGoogle Scholar
Paul, P.A., El-Allaf, S.M., Lipps, P.E. & Madden, L.V. 2004 Rain splash dispersal of Gibberella zeae within wheat canopies in Ohio. Phytopathology 94, 13421349.CrossRefGoogle ScholarPubMed
Peregrine, D.H., Shoker, G. & Symon, A. 1990 The bifurcation of liquid bridges. J. Fluid Mech. 212, 2539.CrossRefGoogle Scholar
Pierson, J.L., Magnaudet, J., Soares, E.J. & Popinet, S. 2020 Revisiting the Taylor–Culick approximation: retraction of an axisymmetric filament. Phys. Rev. Fluids 5 (7), 073602.CrossRefGoogle Scholar
Plateau, J.A.F. 1873 Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires, vol. 2. Gauthier-Villars.Google Scholar
Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228 (16), 58385866.CrossRefGoogle Scholar
Popinet, S. 2015 A quadtree-adaptive multigrid solver for the Serre–Green–Naghdi equations. J. Comput. Phys. 302, 336358.CrossRefGoogle Scholar
Popinet, S. 2018 Numerical models of surface tension. Annu. Rev. Fluid Mech. 50 (1), 4975.CrossRefGoogle Scholar
Poulain, S. & Bourouiba, L. 2018 Biosurfactants change the thinning of contaminated bubbles at bacteria-laden water interfaces. Phys. Rev. Lett. 121, 204502.CrossRefGoogle ScholarPubMed
Poulain, S. & Bourouiba, L. 2019 Disease transmission via drops and bubbles. Phys. Today 72, 7071.CrossRefGoogle Scholar
Qian, J. & Law, C.K. 1997 Regimes of coalescence and separation in droplet collision. J. Fluid Mech. 331, 5980.CrossRefGoogle Scholar
Rayleigh, Lord 1878 On the instability of jets. Proc. Lond. Math. Soc. s1-10 (1), 413.CrossRefGoogle Scholar
Sarobol, P., Cook, A., Clem, P.G., Keicher, D., Hirschfeld, D., Hall, A.C. & Bell, N.S. 2016 Additive manufacturing of hybrid circuits. Annu. Rev. Mater. Res. 46 (1), 4162.CrossRefGoogle Scholar
Schulkes, R.M.S.M. 1994 The evolution and bifurcation of a pendant drop. J. Fluid Mech. 278, 83100.CrossRefGoogle Scholar
Schulkes, R.M.S.M. 1996 The contraction of liquid filaments. J. Fluid Mech. 309, 277300.CrossRefGoogle Scholar
Slobozhanin, L.A. & Perales, J.M. 1993 Stability of liquid bridges between equal disks in an axial gravity field. Phys. Fluids A 5 (6), 13051314.CrossRefGoogle Scholar
Stone, H.A. 1994 Dynamics of drop deformation and breakup in viscous fluids. Annu. Rev. Fluid Mech. 26 (1), 65102.CrossRefGoogle Scholar
Stone, H.A., Bentley, B.J. & Leal, L.G. 1986 An experimental study of transient effects in the breakup of viscous drops. J. Fluid Mech. 173, 131158.CrossRefGoogle Scholar
Stone, H.A. & Leal, L.G. 1989 Relaxation and breakup of an initially extended drop in an otherwise quiescent fluid. J. Fluid Mech. 198, 399427.CrossRefGoogle Scholar
Villermaux, E. 2007 Fragmentation. Annu. Rev. Fluid Mech. 39 (1), 419446.CrossRefGoogle Scholar
Villermaux, E. 2012 The formation of filamentary structures from molten silicates: pele's hair, angel hair, and blown clinker. C. R. Méc. 340 (8), 555564.CrossRefGoogle Scholar
Villermaux, E. & Bossa, B. 2011 Drop fragmentation on impact. J. Fluid Mech. 668, 412435.CrossRefGoogle Scholar
Vincent, L., Duchemin, L. & Villermaux, E. 2014 Remnants from fast liquid withdrawal. Phys. Fluids 26 (3), 031701.CrossRefGoogle Scholar
Wang, Y. & Bourouiba, L. 2018 Unsteady sheet fragmentation: droplet sizes and speeds. J. Fluid Mech. 848, 946967.CrossRefGoogle Scholar
Wang, Y. & Bourouiba, L. 2021 Growth and breakup of ligaments in unsteady fragmentation. J. Fluid Mech. 910, A39.CrossRefGoogle Scholar
Wilkes, E.D., Phillips, S.D. & Basaran, O.A. 1999 Computational and experimental analysis of dynamics of drop formation. Phys. Fluids 11 (12), 35773598.CrossRefGoogle Scholar
Xia, Y. & Steen, P.H. 2018 Moving contact-line mobility measured. J. Fluid Mech. 841, 767783.CrossRefGoogle Scholar
Yarin, A.L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing$\ldots$. Annu. Rev. Fluid Mech. 38 (1), 159192.CrossRefGoogle Scholar
Supplementary material: File

Shen et al. supplementary movie 1

Experiment of inertial detachment of an original sessile water droplet detaching a PMMA substrate, as given in Figure 3. Here the equilibrium contact angle is 60 degrees, the substrates acceleration is 4.2 times gravitational acceleration, the drop initial volume is 80 micro liters. The Bond number in this case is 4. The scale bar corresponds to 1 cm.
Download Shen et al. supplementary movie 1(File)
File 10.8 MB
Supplementary material: File

Shen et al. supplementary movie 2

Direct Numerical Simulation of inertial detachment of an original sessile droplet with constant contact angle of 60 degrees. Stratified wetting tracer particles/analog pathogens such as a range of bacteria that initially distribute within different horizontal layers in the drop are tracked over time. The Bond number here is 6.
Download Shen et al. supplementary movie 2(File)
File 4.9 MB
Supplementary material: File

Shen et al. supplementary movie 3

Direct Numerical Simulation of inertial detachment of an original sessile droplet with constant contact angle of 60 degrees. Hydrophobic tracer particles/analog pathogens such as a range of spores that initially distributed along the drop surface are tracked over time. The Bond number here is 6.
Download Shen et al. supplementary movie 3(File)
File 1.4 MB