Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T15:09:15.546Z Has data issue: false hasContentIssue false

The fractal facets of turbulence

Published online by Cambridge University Press:  21 April 2006

K. R. Sreenivasan
Affiliation:
Center for Applied Mechanics, Yale University, New Haven, CT 06520, USA
C. Meneveau
Affiliation:
Center for Applied Mechanics, Yale University, New Haven, CT 06520, USA

Abstract

Speculations abound that several facets of fully developed turbulent flows are fractals. Although the earlier leading work of Mandelbrot (1974, 1975) suggests that these speculations, initiated largely by himself, are plausible, no effort has yet been made to put them on firmer ground by, resorting to actual measurements in turbulent shear flows. This work is an attempt at filling this gap. In particular, we examine the following questions: (a) Is the turbulent/non-turbulent interface a self-similar fractal, and (if so) what is its fractal dimension ? Does this quantity differ from one class of flows to another? (b) Are constant-property surfaces (such as the iso-velocity and iso-concentration surfaces) in fully developed flows fractals? What are their fractal dimensions? (c) Do dissipative structures in fully developed turbulence form a fractal set? What is the fractal dimension of this set? Answers to these questions (and others to be less fully discussed here) are interesting because they bring the theory of fractals closer to application to turbulence and shed new light on some classical problems in turbulence - for example, the growth of material lines in a turbulent environment. The other feature of this work is that it tries to quantify the seemingly complicated geometric aspects of turbulent flows, a feature that has not received its proper share of attention. The overwhelming conclusion of this work is that several aspects of turbulence can be described roughly by fractals, and that their fractal dimensions can be measured. However, it is not clear how (or whether), given the dimensions for several of its facets, one can solve (up to a useful accuracy) the inverse problem of reconstructing the original set (that is, the turbulent flow itself).

Type
Research Article
Copyright
© 1986 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonia, R. A. & Danh, H. Q. 1977 Phys. Fluids 20, 1050.
Antonia, R. A., Phan-Thien, N. & Chambers, A. J. 1980 J. Fluid Mech. 100, 193.
Antonia, R. A. & Van Atta, C. W. 1975 J. Fluid Mech. 67, 273.
Antonia, R. A. & Van Atta, C. W. 1978 J. Fluid Mech. 84, 561.
Barnsley, M. F., Ervin, V., Hardin, D. & Lancaster, J. 1986 Solution of an inverse problem for fractals and other sets. Proc. Natl Acad. Sci. USA 83, (to appear).Google Scholar
Batchelor, G. K. 1959 J. Fluid Mech. 5, 113.
Batchelor, G. K. & Townsend, A. A. 1947 Proc. R. Soc. Lond. A190, 534.
Batchelor, G. K. & Townsend, A. A. 1949 Proc. R. Soc. Lond. A199, 239.
Carter, P. H., Cawley, R., Licht, A. L., Yorke, J. A. & Melnik, M. S. 1986 In Dimensions and Entropies (ed. G. Mayer-Kress), p. 215. Springer.
Champagne, F. H. 1978 J. Fluid Mech. 86, 67.
Chorin, A. 1982 Commun. Math. Phys. 83, 517.
Corrsin, S. 1959 J. Geophy. Res. 64, 2134.
Corrsin, S. & Karweit, M. 1969 J. Fluid Mech. 39, 87.
Corrsin, S. & Kistler, A. L. 1954 NACA Tech. Rep. 3133.
Corrsin, S. & Phillips, O. M. 1961 J. Soc. Indust. Appl. Maths 9, 395.
Dimotakis, P., Lye, R. C. & Papantoniou, D. Z. 1981 In 15th Intl Symp. Fluid Dyn., Jachranka, Poland.
Feigenbaum, M. J. 1983 In Nonlinear Dynamics and Turbulence (ed. G. I. Barenblatt, G. Iooss & D. D. Joseph). Pitman Advanced Publishing Program.
Friehe, C. A., Van Atta, C. W. & Gibson, C. H. 1971 In Proc. of the AGARD Conf. on Turbulent Shear Flows, London, AGARD Conf. Proc. 93, 181.Google Scholar
Gibson, C. H. & Masiello, P. 1972 In Statistical Models and Turbulence (ed. M. Rosenblatt & C. W. Van Atta), p. 427. Springer.
Gibson, C. H., Stegen, G. R. & Williams, R. B. 1970 J. Fluid Mech. 41, 153.
Grebogi, C., McDonald, S. W., Ott, E. & Yorke, J. A. 1985 Phys. Lett. 110A, 1.
Gurvich, A. & Yaglom, M. 1967 Phys. Fluids Suppl. 10, S59.
Halsey, T. C., Jensen, M. H., Kadanoff, L. P., Procaccia, I. & Shraiman, B. I. 1986 Phys. Rev. A33, 1141.
Hentschel, H. G. E. & Procaccia, I. 1983 Physica 8D, 435.
Kim, H. T., Kline, S. J. & Reynolds, W. C. 1971 J. Fluid Mech. 50, 133.
Kolmogorov, A. N. 1941 C. R. Acad. Sci. URSS 30, 299.
Kolmogorov, A. N. 1962 J. Fluid Mech. 13, 82.
Kovasznay, L. S. G., Kibens, V. & Blackwelder, R. F. 1970 J. Fluid Mech, 41, 283.
Kuo, A.-Y. & Corrsin, S. 1971 J. Fluid Mech. 50, 285.
Kuo, A.-Y. & Corrsin, S. 1972 J. Fluid Mech. 56, 477.
Lovejoy, S. 1982 Science 216, 185.
Lovejoy, S. & Mandelbrot, B. B. 1985 Tellus 37A, 209.
Lovejoy, S. & Schertzer, S. 1986 Scale and dimension dependence in the detection and calibration of remotely sensed atmospheric phenomena. In 2nd Conf. on Satellite Meterology and Remote Sensing, Williamsburg, Va. (submitted).
Mandelbrot, B. B. 1974 J. Fluid Mech. 62, 331.
Mandelbrot, B. B. 1975 J. Fluid Mech. 72, 401.
Mandelbrot, B. B. 1982 The Fractal Geometry of Nature. W. H. Freeman.
Mandelbrot, B. B. 1986 In Dimensions and Entropies in Chaotic Systems (ed. G. Mayer-Kress), p. 19. Springer.
Mcconnell, S. O. 1976 The fine structure of velocity and temperature measured in the laboratory and the atmospheric marine boundary layer. Ph.D. thesis, University of California, San Diego.
Maxworthy, T. 1986 J. Fluid Mech. 173, 95114.
Obukhov, A. M. 1941 C. R. Acad. Sci. URSS 32, 22.
Obukhov, A. M. 1962 J. Fluid Mech. 13, 77.
Onsager, L. 1945 Phys. Rev. 68, 286 (abstract only).
Park, J. T. 1976 Inertial subrange turbulence measurements in the marine boundary layer. Ph.D. thesis, University of California, San Diego.
Pond, S. & Stewart, R. W. 1965 Izv. Atmos. Ocean. Phys. 1, 530.
Richardson, L. F. 1922 Weather Prediction by Numerical Process. Cambridge University Press.
Sreenivasan, K. R. 1986 In Dimensions and Entropies in Chaotic Systems (ed. G. Mayer-Kress), p. 222. Springer.
Sreenivasan, K. R., Antonia, R. A. & Britz, D. 1979 J. Fluid Mech. 94, 745.
Sreenivasan, K. R., Antonia, R. A. & Danh, H. Q. 1977 Phys. Fluids 20, 1238.
Sreenivasan, K. R., Prabhu, A. & Narasimha, R. 1983 J. Fluid Mech. 137, 251.
Sunyach, M. & Mathieu, J. 1969 Intl J. Heat Mass Transfer 12, 1679.
Townsend, A. A. 1956 The Structure of Turbulent Shear Flows. Cambridge University Press.
Umberger, D. & Farmer, J. D. 1985 Phys. Rev. Lett. 55, 661.
Van Atta, C. W. & Antonia, R. A. 1980 Phys. Fluids 23, 252.
Weizsacker, C. F. Von 1948 Z. Phys. 124, 614.
Williams, R. M. & Paulson, C. A. 1977 J. Fluid Mech. 83, 547.
Wyngaard, J. C. & Tennekes, H. 1970 Phys Fluids 13, 1962.
Yeh, T. T. 1971 Spectral transfer and higher-order correlations of velocity and temperature fluctuations in heated grid turbulence. Ph.D. thesis, University of California, San Diego.