Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-19T23:33:57.280Z Has data issue: false hasContentIssue false

Formation of a viscous boundary layer on the free surface of an imploding rotating liquid cylinder

Published online by Cambridge University Press:  19 April 2006

A. L. Cooper
Affiliation:
Plasma Physics Division, Naval Research Laboratory, Washington, D.C. 20375
D. L. Book
Affiliation:
Plasma Physics Division, Naval Research Laboratory, Washington, D.C. 20375

Abstract

The effect of viscosity on the inner free surface of a rotating imploding cylindrical liquid shell compressing an ideal gas or magnetic flux load is analysed in the limit of high Reynolds number Re. The condition of vanishing tangential stress on the free surface leads to the formation of a boundary layer of thickness ∼ Re−½. Within this layer the zonal velocity v is reduced by an amount Δv such that Δ v/vRe−½. This results in a requirement of slightly increased rotation in order to satisfy the criterion for suppression of the Rayleigh-Taylor instability on the free surface. Calculations are presented for a model implosion trajectory.

Type
Research Article
Copyright
© 1979 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. (ed.) 1970 Handbook of Mathematical Functions. Dover.
Alikhanov, S. G., Bakhtin, V. P., Brusnikin, V. M., Glushkov, I. S., Kurtmullaev, R. Kh., Lumin, A. L., Mazychenko, A. D., Norikov, V. P., Pichygin, V. V., Semenov, V. N., Smolkin, G. E., Utyugov, E. G. & Shipuk, I. Ya. 1977 Study of models of liner thermonuclear systems. Plasma Phys. Controlled Nucl. Fusion Res. 1976, vol. 3, pp. 517526. Int. Atomic Energy Authority.
Barcilon, A., Book, D. L. & Cooper, A. L. 1974 Hydrodynamic stability of a rotating liner, Phys. Fluids 17, 17071718.Google Scholar
Book, D. L., Cooper, A. L., Ford, R., Hammer, D., Jenkins, D. J., Robson, A. E. & Turchi, P. J. 1977 Stabilized imploding liner fusion systems. Plasma Phys. Controlled Nucl. Fusion Res. 1976, vol. 3, pp. 507516. Int. Atomic Energy Authority.
Burton, R. L., Turchi, P. J., Jenkins, D. J. & Cooper, A. L. 1977 Hydrodynamic model experiments for stabilized liquid liner with annular piston drive. Proc. 7th Symp. Engng Problems of Fusion Res., Knoxville, Tennessee, pp. 225230.
Cooper, A. L. & Book, D. L. 1978 Magnetic flux diffusion in imploding liquid liners. Phys. Fluids 21, 3441.Google Scholar
Grivorev, F. V., Kormer, S. B., Mikhailova, O. L., Tolochko, A. P. & Urlin, V. D. 1972 Experimental determination of the compressibility of hydrogen at densities 05–2 g/cm3. Metallization of hydrogen. Zh. Eksp. Tear. Fiz. Pisma Red. 16, 286–290 [Sov. Phys. J. Exp. Theor. Phys. Lett. 16, 201–204].
Karweit, M. J. & Corrsin, S. 1975 Observations of cellular pattern in a partly filled, horizontal rotating cylinder. Phys. Fluids 18, 111112.Google Scholar
Knoepfel, H. 1970 Pulsed High Magnetic Fields. North Holland.
Orr, F. M. & Scriven, L. E. 1978 Rimming flow: numerical simulation of steady, viscous, free-surface flow with surface tension. J. Fluid Mech. 84, 145165.Google Scholar
Ruschak, K. J. & Scriven, L. E. 1976 Rimming flow of liquid in a rotating horizontal cylinder J. Fluid Mech. 76, 113125.Google Scholar
Turchi, P. J., Cooper, A. L., Ford, R. & Jenkins, D. L. 1976 Rotational stabilization of an imploding liquid cylinder. Phys. Rev. Lett. 36, 15461549.Google Scholar