Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-12-01T04:37:24.572Z Has data issue: false hasContentIssue false

Forcing of oceanic mean flows by dissipating internal tides

Published online by Cambridge University Press:  08 August 2012

Nicolas Grisouard*
Affiliation:
Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012-1185, USA
Oliver Bühler
Affiliation:
Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012-1185, USA
*
Email address for correspondence: [email protected]

Abstract

We present a theoretical and numerical study of the effective mean force exerted on an oceanic mean flow due to the presence of small-amplitude internal waves that are forced by the oscillatory flow of a barotropic tide over undulating topography and are also subject to dissipation. This extends the classic lee-wave drag problem of atmospheric wave–mean interaction theory to a more complicated oceanographic setting, because now the steady lee waves are replaced by oscillatory internal tides and, most importantly, because now the three-dimensional oceanic mean flow is defined by time averaging over the fast tidal cycles rather than by the zonal averaging familiar from atmospheric theory. Although the details of our computation are quite different, we recover the main action-at-a-distance result from the atmospheric setting, namely that the effective mean force that is felt by the mean flow is located in regions of wave dissipation, and not necessarily near the topographic wave source. Specifically, we derive an explicit expression for the effective mean force at leading order using a perturbation series in small wave amplitude within the framework of generalized Lagrangian-mean theory, discuss in detail the range of situations in which a strong, secularly growing mean-flow response can be expected, and then compute the effective mean force numerically in a number of idealized examples with simple topographies.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Andrews, D. G., Holton, J. R. & Leovy, C. B. 1987 Middle Atmosphere Dynamics, 1st edn. Academic.Google Scholar
2. Andrews, D. G. & McIntyre, M. E. 1978 An exact theory of nonlinear waves on a Lagrangian-mean flow. J. Fluid Mech. 89 (4), 606646.CrossRefGoogle Scholar
3. Barreiro, A. K. & Bühler, O. 2008 Longshore current dislocation on barred beaches. J. Geophys. Res. 113, C12004.Google Scholar
4. Barton, G. 1989 Elements of Green’s Functions and Propagation: Potentials, Diffusion, and Waves. Oxford University Press.Google Scholar
5. Bell, T. H. 1975 Lee waves in stratified flows with simple harmonic time dependence. J. Fluid Mech. 67 (4), 705722.CrossRefGoogle Scholar
6. Bretherton, F. P. 1969 On the mean motion induced by internal gravity waves. J. Fluid Mech. 36 (4), 785803.CrossRefGoogle Scholar
7. Bühler, O. 2000 On the vorticity transport due to dissipating or breaking waves in shallow-water flow. J. Fluid Mech. 407, 235263.CrossRefGoogle Scholar
8. Bühler, O. 2009 Waves and Mean Flows. Cambridge University Press.CrossRefGoogle Scholar
9. Bühler, O. 2010 Wave–vortex interactions in fluids and superfluids. Annu. Rev. Fluid Mech. 42, 205228.CrossRefGoogle Scholar
10. Bühler, O. & Jacobson, T. E. 2001 Wave-driven currents and vortex dynamics on barred beaches. J. Fluid Mech. 449, 313339.CrossRefGoogle Scholar
11. Bühler, O. & McIntyre, M. E. 1998 On non-dissipative wave-mean interactions in the atmosphere or oceans. J. Fluid Mech. 354, 301343.CrossRefGoogle Scholar
12. Bühler, O. & McIntyre, M. E. 2003 Remote recoil: a new wave–mean interaction effect. J. Fluid Mech. 492, 207230.CrossRefGoogle Scholar
13. Bühler, O. & Muller, C. J. 2007 Instability and focusing of internal tides in the deep ocean. J. Fluid Mech. 588, 128.CrossRefGoogle Scholar
14. Carter, G. S., Gregg, M. C. & Merrifield, M. A. 2006 Flow and mixing around a small seamount on Kaena Ridge, Hawaii. J. Phys. Oceanogr. 36 (6), 10361052.CrossRefGoogle Scholar
15. Echeverri, P. & Peacock, T. 2010 Internal tide generation by arbitrary two-dimensional topography. J. Fluid Mech. 659, 247266.CrossRefGoogle Scholar
16. Garrett, C. & Kunze, E. 2007 Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech. 39, 5787.CrossRefGoogle Scholar
17. Huthnance, J. 1973 Tidal current asymmetries over the Norfolk Sandbanks. Estuar. Coast. Mar. Sci. 1 (1), 8999.CrossRefGoogle Scholar
18. King, B., Zhang, H. P. & Swinney, H. L. 2009 Tidal flow over three-dimensional topography in a stratified fluid. Phys. Fluids 21 (11), 116601.CrossRefGoogle Scholar
19. Kunze, E. & Toole, J. M. 1997 Tidally driven vorticity, diurnal shear, and turbulence atop fieberling seamount. J. Phys. Oceanogr. 27 (12), 26632693.2.0.CO;2>CrossRefGoogle Scholar
20. Ledwell, J. R., Montgomery, E. T., Polzin, K. L., St. Laurent, L. C., Schmitt, R. W. & Toole, J. M. 2000 Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature 403 (6766), 179182.CrossRefGoogle ScholarPubMed
21. Llewellyn Smith, S. G. & Young, W. R. 2002 Conversion of the barotropic tide. J. Phys. Oceanogr. 32 (5), 15541566.2.0.CO;2>CrossRefGoogle Scholar
22. Llewellyn Smith, S. G. & Young, W. R. 2003 Tidal conversion at a very steep ridge. J. Fluid Mech. 495, 175191.CrossRefGoogle Scholar
23. Loder, J. W. 1980 Topographic rectification of tidal currents on the sides of Georges bank. J. Phys. Oceanogr. 10 (9), 13991416.2.0.CO;2>CrossRefGoogle Scholar
24. Maas, L. R. M. & Zimmerman, J. T. F. 1989a Tide-topography interactions in a stratified shelf sea I. Basic equations for quasi-nonlinear internal tides. Geophys. Astrophys. Fluid Dyn. 45 (1–2), 135.CrossRefGoogle Scholar
25. Maas, L. R. M. & Zimmerman, J. T. F. 1989b Tide-topography interactions in a stratified shelf sea II. Bottom trapped internal tides and baroclinic residual currents. Geophys. Astrophys. Fluid Dyn. 45 (1–2), 3769.CrossRefGoogle Scholar
26. McIntyre, M. E. & Norton, W. A. 1990 Dissipative wave-mean interactions and the transport of vorticity or potential vorticity. J. Fluid Mech. 212, 403435.CrossRefGoogle Scholar
27. Muller, C. J. & Bühler, O. 2009 Saturation of the internal tides and induced mixing in the abyssal ocean. J. Phys. Oceanogr. 39 (9), 20772096.CrossRefGoogle Scholar
28. Nikurashin, M. & Ferrari, R. 2010a Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: application to the southern ocean. J. Phys. Oceanogr. 40 (9), 20252042.CrossRefGoogle Scholar
29. Nikurashin, M. & Ferrari, R. 2010b Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: theory. J. Phys. Oceanogr. 40 (5), 10551074.CrossRefGoogle Scholar
30. Olver, F. W. J., Lozier, D. W., Boisvert, R. F. & Clark, C. W.  (Eds) 2010 NIST Handbook of Mathematical Functions. Cambridge University Press.Google Scholar
31. Pétrélis, F., Llewellyn Smith, S. & Young, W. R. 2006 Tidal conversion at a submarine ridge. J. Phys. Oceanogr. 36 (6), 10531071.CrossRefGoogle Scholar
32. Polzin, K. L., Toole, J. M., Ledwell, J. R. & Schmitt, R. W. 1997 Spatial variability of turbulent mixing in the abyssal ocean. Science 276 (5309), 9396.CrossRefGoogle ScholarPubMed
33. Robinson, R. M. 1969 The effects of a vertical barrier on internal waves. Deep Sea Res. Oceanogr. Abstracts 16 (5), 421429.CrossRefGoogle Scholar
34. St Laurent, L. & Garrett, C. 2002 The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr. 32 (10), 28822899.2.0.CO;2>CrossRefGoogle Scholar
35. Zeilon, N. 1912 On tidal boundary-waves and related hydrodynamical problems. Kungl. Svenska Vetenskapsakademiens Handlingar 47 (4), 345.Google Scholar
36. Zimmerman, J. T. F. 1978 Topographic generation of residual circulation by oscillatory (tidal) currents. Geophys. Astrophys. Fluid Dyn. 11 (1), 3547.CrossRefGoogle Scholar
37. Zimmerman, J. T. F. 1981 Dynamics, diffusion and geomorphological significance of tidal residual eddies. Nature 290 (5807), 549555.CrossRefGoogle Scholar