Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-20T19:06:18.451Z Has data issue: false hasContentIssue false

Forced unidirectional infiltration of deformable porous media

Published online by Cambridge University Press:  26 April 2006

Jared L. Sommer
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Present address: Technical Research Associates, Salt Lake City, UT, USA.
Andreas Mortensen
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract

We treat the infiltration of an initially dry deformable porous medium by a pressurized liquid, taking into account the influence of variations in permeability within the deformed porous medium. Chief assumptions of our analysis are neglect of gravity, of inertial forces, and of partial saturation in the porous medium. We focus on unidirectional infiltration under constant liquid pressure, and present data from the infiltration of polyurethane sponge by ethylene glycol in a configuration of nearly unidirectional infiltration with reflief from friction effects along sample sides. We find excellent agreement between theory and experiment at longer infiltration times. We examine an additional assumption, namely the neglect of solid-phase velocity compared with average local liquid velicity at lower porous-medium strains. Agreement of this simplified model with experimental data, albeit less good, remains quite acceptable given the considerable computational simplicity it produces.

Type
Research Article
Copyright
© 1996 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, W. G. 1987 Wettability literature survey-Part 5: The effects of wettability on relative permeability. J. Petrol. Technol. 39, 14531468.Google Scholar
Angulo, R., Gaudet, J. P., Thony, J. L. & Vauclin, M. 1990a Conductivité hydraulique d'un milieu poreux partiellement saturé, déformable. I. Principes de détermination. C. R. Acadé. Sci. Paris 310 (II), 161164.Google Scholar
Angulo, R., Gaudet, J. P., Thony, J. L. & Vauclin, M. 1990b Conductivité hydraulique d'un milieu poreux partiellement saturé, déformable. II. Résultats expérimentaux. C. R. Acadé. Sci. Paris 310 (II), 341345.Google Scholar
Barry, S. I & Aldis, G. K. 1990 Comparison of models for flow induced deformation of soft biological tissue. J. Biomech. 23, 647654.Google Scholar
Bear, J. 1972 Dynamics of Fluids in Porous Media, pp. 206, 303, and 519. Elsevier.
Bear, J. & Bachmat, Y. 1990 Introduction to Modeling of Transport Phenomena in Porous Media, p. 305. Kluwer.
Beavers, G. S., Hajii, A. & Sparrow, E. M. 1981a Fluid flow through a class of highly deformable porous media, Part I: Experiments with air. Trans. ASME I: J. Fluids Engng 103, 432439.Google Scholar
Beavers, G. S. & Wilson, T. A. 1975 Flow through a deformable porous material. Trans. ASME E: J. Appl. Mech. 42, 598602.Google Scholar
Beavers, G. S., Wittenberg, K. & Sparrow, E. M. 1981b Fluid flow through a class of highly deformable porous media, Part II: Experiments with water. Trans. ASME I: J. Fluids Engng 103, 440444.Google Scholar
Biot, M. A. 1955 Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26, 182185.Google Scholar
Dave, R. 1990 A unified approach to modeling resin flow during composite processing. J. Composite Mater. 24, 2341.Google Scholar
Dullien, F. A. L. 1979 Porous Media, Fluid Transport and Pore Structure, pp. 257283. Academic.
Green, W. H. & Ampt, G. A. 1911 Studies on soil physics. Part I.-The flow of air and water through soils. J. Agric. Sci 4 (May), 124.Google Scholar
Gutowski, T. G., Morigaki, T. & Cai, Z. 1987 The consolidation of laminate composites. J. Composite Mater. 21, 172188.Google Scholar
Lal, R., Bridge, B. J. & Collis-George, N. 1970 The effect of column diameter on the infiltration behaviour of a swelling soil. Austral. J. Soil Res. 8, 185193.Google Scholar
Lambe, T. W. & Whitman, R. V. 1979 Soil Mechanics, pp. 281292. John Wiley and Sons.
Lanir, Y., Sauob, S. & Maretsky, P. 1990 Nonlinear finite deformation response of open cell polyurethane sponge to fluid filtration. Trans. ASME E: J. Appl. Mech. 57, 449454.Google Scholar
Masur, L. J., Mortensen, A., Cornie, J. A. & Flemings, M. C. 1989 Infiltration of fibrous preforms by a pure metal: Part II. Experiment. Metall. Trans. 20A, 25492557.Google Scholar
Morel-Seytoux, H. J. 1969 Introduction to flow of immiscible liquids in porous media. In Flow through Porous Media (ed. R. J. M. D. Wiest), pp. 455516.
Mortensen, A. 1990 Corrigenda and comments on the infiltration of fiber preforms. Metall. Trans. 21A, 2287.Google Scholar
Mortensen, A., Masur, L. J., Cornie, J. A. & Flemings, M. C. 1989 Infiltration of fibrous preforms by a pure metal: Part I. Theory. Metall. Trans. 20A, 25352547.Google Scholar
Mortensen, A. & Wong, T. 1990 Infiltration of fibrous preforms by a pure metal: Part III. Capillary phenomena. Metall. Trans. 21A, 22572263.Google Scholar
Nur, A. & Byerlee, J. D. 1971 An exact effective stress law for elastic deformation of rock with fluids. J. Geophys. Res. 76, 64146419.Google Scholar
Parker, K. H. & Mehta, R. V. & Caro, C. G. 1987 Steady flow in porous, elastically deformable materials. Trans. ASME E: J. Appl. Mech. 54, 794800.Google Scholar
Philip, J. R. 1968 Kinetics of sorption and volume change in clay-colloid pastes. Austral. J. Soil Res. 6, 249267.Google Scholar
Philip, J. R. 1969a Hydrostatics and hydrodynamics in swelling soils. Water Resources Res. 5, 10701077.Google Scholar
Philip, J. R. 1969b Theory of infiltration. In Advances in Hydroscience, 5 (ed. V. T. Chow), pp. 215297. Academic.
Philip, J. R. & Smiles, D. E. 1969 Kinetics of sorption and volume change in three-component systems. Austral. J. Soil Res. 7, 119.Google Scholar
Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. 1989 Numerical Recipes: The Art of Scientific Computing (Fortran version), pp. 271, 551, 583. Cambridge University Press.
Scheidegger, A. E. 1974 The Physics of Flow through Porous Media, p. 84. Toronto Press.
Smiles, D. E. & Colombera, P. M. 1975 Early stages of infiltration into a swelling soil. In Proc. Seminar on Heat and Mass Transfer in the Environment of Vegetation (ed. D. A. deVries & N. H. Afgan), pp. 7785. Halsted.
Smiles, D. E. & Rosenthal, M. J. 1968 The movement of water in swelling materials. Austral. J. Soil Res. 6, 237248.Google Scholar
Sommer, J. L. 1992 Infiltration of deformable porous media. PhD thesis, Department of Materials Science and Engineering, Massachusetts Institute of Technology.
Yamauchi, T. & Nishida, Y. 1995 Infiltration kinetics of fibrous preforms by aluminum with solidification. Acta Metall. Mater. 43, 13131321.Google Scholar
Yang, Y. W., Zografi, G. & Miller, E. E. 1988 Capillary flow phenomena and wettability in porous media. II - Dynamic flow studies. J. Colloid Interface Sci. 122, 3546.Google Scholar