Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T16:55:42.145Z Has data issue: false hasContentIssue false

Fluid–solid Floquet stability analysis of self-propelled heaving foils

Published online by Cambridge University Press:  13 January 2021

Luis Benetti Ramos*
Affiliation:
ONERA – The French Aerospace Lab, F-92190Meudon, France
Olivier Marquet
Affiliation:
ONERA – The French Aerospace Lab, F-92190Meudon, France
Michel Bergmann
Affiliation:
Université de Bordeaux, IMB, UMR 5251, F-33400Talence, France Equipe-projet Memphis, Inria Bordeaux-Sud Ouest, F-33400Talence, France
Angelo Iollo
Affiliation:
Université de Bordeaux, IMB, UMR 5251, F-33400Talence, France Equipe-projet Memphis, Inria Bordeaux-Sud Ouest, F-33400Talence, France
*
Email address for correspondence: [email protected]

Abstract

We investigate the role of linear mechanisms in the emergence of nonlinear horizontal self-propelled states of a heaving foil in a quiescent fluid. Two states are analysed: a periodic state of unidirectional motion and a quasi-periodic state of slow back and forth motion around a mean horizontal position. The states emergence is explained through a fluid–solid Floquet stability analysis of the non-propulsive symmetric base solution. Unlike a purely hydrodynamic analysis, our analysis accurately determines the locomotion states onset. An unstable synchronous mode is found when the unidirectional propulsive solution is observed. The obtained mode has a propulsive character, featuring a mean horizontal velocity and an asymmetric flow that generates a horizontal force accelerating the foil. An unstable asynchronous mode, also featuring flow asymmetry and a non-zero velocity, is found when the back and forth state is observed. Its associated complex multiplier introduces a slow modulation of the flapping period, agreeing with the quasi-periodic nature of the back and forth regime. The temporal evolution of this perturbation shows how the horizontal force exerted by the flow is alternatively propulsive or resistive over a slow period. For both modes, an analysis of the velocity and force perturbation time-averaged over the flapping period is used to establish physical instability criteria. The behaviour for a large solid-to-fluid density ratio of the modes is thus analysed. The asynchronous fluid–solid mode converges towards the purely hydrodynamic one, whereas the synchronous mode becomes marginally unstable in our analysis not converging to the purely hydrodynamic analysis where it is never destabilised.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alben, S. & Shelley, M. 2005 Coherent locomotion as an attracting state for a free flapping body. Proc. Natl Acad. Sci. USA 102 (32), 1116311166.CrossRefGoogle ScholarPubMed
Barkley, D. 2006 Linear analysis of the cylinder wake mean flow. Europhys. Lett. 75 (5), 750756.CrossRefGoogle Scholar
Barkley, D. & Henderson, R.D. 1996 Three-dimensional Floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech. 322, 215241.CrossRefGoogle Scholar
Barrett, D.S. 1996 Propulsive efficiency of a flexible hull underwater vehicle. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA.Google Scholar
Becker, A.D., Masoud, H., Newbolt, J.W., Shelley, M. & Ristroph, L. 2015 Hydrodynamic schooling of flapping swimmers. Nat. Commun. 6 (May), 18.CrossRefGoogle ScholarPubMed
Brion, V., Sipp, D. & Jacquin, L. 2014 Linear dynamics of the Lamb–Chaplygin dipole in the two-dimensional limit. Phys. Fluids 26, 064103.CrossRefGoogle Scholar
Cahouet, J. & Chabard, J.-P. 1988 Some fast 3D finite element solvers for the generalized Stokes problem. Intl J. Numer. Meth. Fluids 8 (8), 869895.CrossRefGoogle Scholar
Causin, P., Gerbeau, J.F. & Nobile, F. 2005 Added-mass effect in the design of partitioned algorithms for fluid–structure problems. Comput. Meth. Appl. Engng 194 (42–44), 45064527.CrossRefGoogle Scholar
Childress, S. & Dudley, R. 2004 Transition from ciliary to flapping mode in a swimming mollusc: flapping flight as a bifurcation in $\textrm {Re}\omega$. J. Fluid Mech. 498 (498), 257288.CrossRefGoogle Scholar
Cossu, C. & Morino, L. 2000 On the instability of a spring-mounted circular cylinder in a viscous flow at low Reynolds number. J. Fluids Struct. 14, 183196.CrossRefGoogle Scholar
Deng, J. & Caulfield, C.P. 2016 Dependence on aspect ratio of symmetry breaking for oscillating foils: implications for flapping flight. J. Fluid Mech. 787, 1649.CrossRefGoogle Scholar
Deng, J. & Caulfield, C.P. 2018 Horizontal locomotion of a vertically flapping oblate spheroid. J. Fluid Mech. 840, 688708.CrossRefGoogle Scholar
Deng, J., Teng, L., Caulfield, C.P. & Mao, X. 2016 Instabilities of interacting vortex rings generated by an oscillating disk. Phys. Rev. E 94 (3), 17.CrossRefGoogle ScholarPubMed
Deng, J., Xue, J., Mao, X. & Caulfield, C.P. 2017 Coherent structures in interacting vortex rings. Phys. Rev. Fluids 2 (2), 1518.CrossRefGoogle Scholar
Dowell, E.H., Curtiss, H.C., Scanlan, R.H. & Sisto, F. 1989 A Modern Course in Aeroelasticity, vol. 3. Springer.CrossRefGoogle Scholar
Elston, J.R., Blackburn, H.M. & Sheridan, J. 2006 The primary and secondary instabilities of flow generated by an oscillating circular cylinder. J. Fluid Mech. 550, 359389.CrossRefGoogle Scholar
Elston, J.R., Sheridan, J. & Blackburn, H.M. 2004 Two-dimensional Floquet stability analysis of the flow produced by an oscillating circular cylinder in quiescent fluid. Eur. J. Mech. B/Fluids 23, 99106.CrossRefGoogle Scholar
Ern, P., Risso, F., Fabre, D. & Magnaudet, J. 2012 Wake-induced oscillatory paths of bodies freely rising or falling in fluids. Annu. Rev. Fluid Mech. 44 (1), 97121.CrossRefGoogle Scholar
Fabre, D., Assemat, P. & Magnaudet, J. 2011 A quasi-static approach to the stability of the path of heavy bodies falling within a viscous fluid. J. Fluids Struct. 27, 758767.CrossRefGoogle Scholar
Fabre, D., Citro, V., Ferreira Sabino, D., Bonnefis, P., Sierra, J., Giannetti, F. & Pigou, M. 2018 A practical review on linear and nonlinear global approaches to flow instabilities. Appl. Mech. Rev. 70 (6), 060802.CrossRefGoogle Scholar
Fabre, D., Sipp, D. & Jacquin, L. 2006 Kelvin waves and the singular modes of the Lamb–Oseen vortex. J. Fluid Mech. 551, 235274.CrossRefGoogle Scholar
Faux, D., Thomas, O., Cattan, E. & Grondel, S. 2018 Two modes resonant combined motion for insect wings kinematics reproduction and lift generation. Europhys. Lett. 121 (6), 66001.CrossRefGoogle Scholar
Floquet, G. 1883 Sur les équations différentielles linéaires à coefficients périodiques. Ann. Sci. É.N.S. 2e série 12, 4788.Google Scholar
Goza, A., Colonius, T. & Sader, J.E. 2018 Global modes and nonlinear analysis of inverted-flag flapping. J. Fluid Mech. 857, 312344.CrossRefGoogle Scholar
Gray, J. 1933 The movement of fish with special reference to the eel. J. Expl Biol. 10 (3), 88104.Google Scholar
Hecht, F. 2012 New development in freeFEM ++. J. Numer. Maths 20 (3), 114.Google Scholar
Jallas, D., Marquet, O. & Fabre, D. 2017 Linear and nonlinear perturbation analysis of the symmetry breaking in time-periodic propulsive wakes. Phys. Rev. E 95 (6), 115.CrossRefGoogle ScholarPubMed
Jenny, M. & Dušek, J. 2004 Efficient numerical method for the direct numerical simulation of the flow past a single light moving spherical body in transitional regimes. J. Comput. Phys. 194 (1), 215232.CrossRefGoogle Scholar
Kress, W. & Lötstedt, P. 2006 Time step restrictions using semi-explicit methods for the incompressible Navier–Stokes equations. Comput. Meth. Appl. Mech. Engng 195 (33-36), 44334447.CrossRefGoogle Scholar
Lauga, E. 2011 Life around the scallop theorem. Soft Matt. 7 (7), 30603065.CrossRefGoogle Scholar
Lu, X.Y. & Liao, Q. 2006 Dynamic responses of a two-dimensional flapping foil motion. Phys. Fluids 18 (9), 098104.CrossRefGoogle Scholar
Moored, K.W., Dewey, P.A., Smits, A.J. & Haj-Hariri, H. 2012 Hydrodynamic wake resonance as an underlying principle of efficient unsteady propulsion. J. Fluid Mech. 708 (February 2015), 329348.CrossRefGoogle Scholar
Mougin, G. & Magnaudet, J. 2003 The generalized Kirchhoff equations and their application to the interaction between a rigid body and an arbitrary time-dependent viscous flow. Intl J. Multiphase Flow 28, 18371851.CrossRefGoogle Scholar
Murphy, D.W., Adhikari, D., Webster, D.R. & Yen, J. 2016 Underwater flight by the planktonic sea butterfly. J. Expl Biol. 219 (4), 535543.CrossRefGoogle ScholarPubMed
Navrose, N. & Mittal, S. 2016 Lock-in in vortex-induced vibration. J. Fluid Mech. 794, 565594.CrossRefGoogle Scholar
Negi, P.S., Hanifi, A. & Henningson, D.S. 2019 Global stability of rigid-body-motion fluid–structure- interaction problems. arXiv:1910.09605.CrossRefGoogle Scholar
Pfister, J.-L. & Marquet, O. 2020 Fluid–structure stability analyses and nonlinear dynamics of flexible splitter plates interacting with a circular cylinder flow. J. Fluid Mech. 896, 138.CrossRefGoogle Scholar
Purcell, E.M. 1977 Life at low Reynolds number. Am. J. Phys. 45 (1), 311.CrossRefGoogle Scholar
Ramananarivo, S., Godoy-Diana, R. & Thiria, B. 2013 Passive elastic mechanism to mimic fish-muscle action in anguilliform swimming. J. R. Soc. Interface 10 (88), 20130667.CrossRefGoogle ScholarPubMed
Saad, Y. 2011 Numerical Methods for Large Eigenvalue Problems. Society for Industrial and Applied Mathematics.CrossRefGoogle Scholar
Shyy, W., Aono, H., Chimakurthi, S.K., Trizila, P., Kang, C.K., Cesnik, C.E.S. & Liu, H. 2010 Recent progress in flapping wing aerodynamics and aeroelasticity. Prog. Aerosp. Sci. 46 (7), 284327.CrossRefGoogle Scholar
Sipp, D. & Lebedev, A. 2007 Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows. J. Fluid Mech. 593, 333358.CrossRefGoogle Scholar
Spagnolie, S.E., Moret, L., Shelley, M.J. & Zhang, J. 2010 Surprising behaviors in flapping locomotion with passive pitching. Phys. Fluids 22 (4), 120.CrossRefGoogle Scholar
Tammisola, O., Lundell, F. & Söderberg, L.D. 2012 Surface tension-induced global instability of planar jets and wakes. J. Fluid Mech. 713, 632658.CrossRefGoogle Scholar
Tchoufag, J., Fabre, D. & Magnaudet, J. 2014 a Global linear stability analysis of the wake and path of buoyancy-driven disks and thin cylinders. J. Fluid Mech. 740, 278311.CrossRefGoogle Scholar
Tchoufag, J., Magnaudet, J. & Fabre, D. 2014 b Linear instability of the path of a freely rising spheroidal bubble. J. Fluid Mech. 751, 112.CrossRefGoogle Scholar
Triantafyllou, G.S., Triantafyllou, M.S. & Grosenbaugh, M.A. 1993 Optimal thrust development in oscillating foils with application to fish propulsion. J. Fluids Structures 7 (2), 205224.CrossRefGoogle Scholar
Vandenberghe, N., Childress, S. & Zhang, J. 2006 On unidirectional flight of a free flapping wing. Phys. Fluids 18 (1), 18.CrossRefGoogle Scholar
Vandenberghe, N., Zhang, J. & Childress, S. 2004 Symmetry breaking leads to forward flapping flight. J. Fluid Mech. 506 (506), 147155.CrossRefGoogle Scholar
Weis-Fogh, T. 1973 Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J. Expl Biol. 59 (1), 169230.Google Scholar
Williams, B.J., Anand, S.V., Rajagopalan, J. & Saif, M.T.A. 2014 A self-propelled biohybrid swimmer at low Reynolds number. Nat. Commun. 5, 18.CrossRefGoogle ScholarPubMed
Wu, T.Y. 2010 A review on fish swimming and bird/insect flight. Annu. Rev. Fluid Mech. 43 (1), 2558.CrossRefGoogle Scholar
Zhang, X., Ni, S., Wang, S. & He, G. 2009 Effects of geometric shape on the hydrodynamics of a self-propelled flapping foil. Phys. Fluids 21 (10), 103302.CrossRefGoogle Scholar