Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T15:21:27.022Z Has data issue: false hasContentIssue false

Fluid flows driven by light scattering

Published online by Cambridge University Press:  15 November 2010

R. WUNENBURGER*
Affiliation:
Centre de Physique Moléculaire Optique et Hertzienne, UMR CNRS 5798, Université Bordeaux I, 351 cours de la Libération, 33405 Talence CEDEX, France
B. ISSENMANN
Affiliation:
Centre de Physique Moléculaire Optique et Hertzienne, UMR CNRS 5798, Université Bordeaux I, 351 cours de la Libération, 33405 Talence CEDEX, France
E. BRASSELET
Affiliation:
Centre de Physique Moléculaire Optique et Hertzienne, UMR CNRS 5798, Université Bordeaux I, 351 cours de la Libération, 33405 Talence CEDEX, France
C. LOUSSERT
Affiliation:
Centre de Physique Moléculaire Optique et Hertzienne, UMR CNRS 5798, Université Bordeaux I, 351 cours de la Libération, 33405 Talence CEDEX, France
V. HOURTANE
Affiliation:
Centre de Physique Moléculaire Optique et Hertzienne, UMR CNRS 5798, Université Bordeaux I, 351 cours de la Libération, 33405 Talence CEDEX, France
J.-P. DELVILLE
Affiliation:
Centre de Physique Moléculaire Optique et Hertzienne, UMR CNRS 5798, Université Bordeaux I, 351 cours de la Libération, 33405 Talence CEDEX, France
*
Email address for correspondence: [email protected]

Abstract

We report on the direct experimental observation of laser-induced flows in isotropic liquids that scatter light. We use a droplet microemulsion in the two-phase regime, which behaves like a binary mixture. Close to its critical consolute line, the microemulsion undergoes large refractive index fluctuations that scatter light. The radiation pressure of a laser beam is focused onto the soft interface between the two phases of the microemulsion and induces a cylindrical liquid jet that continuously emits droplets. We demonstrate that this dripping phenomenon takes place as a consequence of a steady flow induced by the transfer of linear momentum from the optical field to the liquid due to light scattering. We first show that the cylindrical jet guides light as a step-index liquid optical fiber whose core diameter is self-adapted to the light itself. Then, by modelling the light-induced flow as a low-Reynolds-number, parallel flow, we predict the dependence of the dripping flow rate on the thermophysical properties of the microemulsion and the laser beam power. Satisfying agreement is found between the model and experiments.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ashkin, A. & Dziedzic, J. M. 1973 Radiation pressure on a free surface. Phys. Rev. Lett. 30, 139142.CrossRefGoogle Scholar
Ashkin, A., Dziedzic, J. M. & Smith, P. W. 1982 Continuous-wave self-focusing and self-trapping of light in artificial Kerr media. Opt. Lett. 7 (6), 276278.CrossRefGoogle ScholarPubMed
Beysens, D., Bourgou, A. & Calmettes, P. 1982 Experimental determination of universal amplitude combinations for binary fluids. Part I. Statics. Phys. Rev. A 26, 3589–2609.CrossRefGoogle Scholar
Brasselet, E. & Delville, J. P. 2008 Liquid-core liquid-cladding optical fibers sustained by light radiation pressure: electromagnetic model and geometrical analog. Phys. Rev. A 78, 013835.CrossRefGoogle Scholar
Brasselet, E., Wunenburger, R. & Delville, J. P. 2008 Liquid optical fibers with a multistable core actuated by light radiation pressure. Phys. Rev. Lett. 101, 014501.CrossRefGoogle ScholarPubMed
Cametti, C., Codastefano, P., d'Arrigo, G., Tartaglia, P., Rouch, J. & Chen, S. H. 1990 Viscoelastic behavior of dense microemulsions. Phys. Rev. A 42, 34213426.CrossRefGoogle ScholarPubMed
Casner, A. & Delville, J.-P. 2001 Giant deformations of a liquid–liquid interface induced by the optical radiation pressure. Phys. Rev. Lett. 87, 054503.CrossRefGoogle ScholarPubMed
Casner, A. & Delville, J. P. 2003 Laser-induced hydrodynamic instability of fluid interfaces. Phys. Rev. Lett. 90, 144503.CrossRefGoogle ScholarPubMed
Casner, A. & Delville, J. P. 2004 Laser-sustained liquid bridges. Europhys. Lett. 65, 337343.CrossRefGoogle Scholar
Casner, A., Delville, J. P. & Brevik, I. 2003 Asymmetric optical radiation pressure effects on liquid interfaces under intense illumination. J. Opt. Soc. Am. B 90, 11.Google Scholar
Chraïbi, H., Lasseux, D., Arquis, E., Wunenburger, R. & Delville, J.-P. 2008 a Simulation of an optically induced asymmetric deformation of a liquid—liquid interface. Eur. J. Mech. B/Fluids 27, 419432.CrossRefGoogle Scholar
Chraïbi, H., Lasseux, D., Arquis, E., Wunenburger, R. & Delville, J.-P. 2008 b Stretching and squeezing of sessile dielectric drops by the optical radiation pressure. Phys. Rev. E 77, 066706.CrossRefGoogle ScholarPubMed
Danov, K. D. 2001 On the viscosity of dilute emulsions. J. Colloid Interface Sci. 235 (1), 144149.CrossRefGoogle ScholarPubMed
Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71, 036601.CrossRefGoogle Scholar
Freysz, E. 1990 Etude des non linéarités optiques dans les mélanges liquides binaires critiques. Thèse d'état, Université Bordeaux 1.Google Scholar
Freysz, E., Afifi, M. & Ducasse, A. 1985 Giant optical nonlinearities of critical microemulsions. J. Phys. Lett. 46, L-181–L-187.CrossRefGoogle Scholar
Freysz, E., Laffon, E., Delville, J. P. & Ducasse, A. 1994 Phase conjugation in critical microemulsions. Phys. Rev. E 49 (3), 21412149.CrossRefGoogle ScholarPubMed
Gonzalez, H., McCluskey, F. M. J., Castellanos, A. & Barrero, A. 1989 Stabilization of dielectric liquid bridges by electric fields in the absence of gravity. J. Fluid Mech. 206, 545561.CrossRefGoogle Scholar
Grigorova, B. M., Rastopov, S. F. & Sukhodol'skii, A. T. 1990 Coherent correlation spectroscopy of capillary waves. Sov. Phys. Tech. Phys. 35, 374376.Google Scholar
Harada, Y. & Asakura, T. 1996 Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Opt. Commun. 124, 529541.CrossRefGoogle Scholar
Hart, S. J. & Terray, A. V. 2003 Refractive-index-driven separation of colloidal polymer particles using optical chromatography. Appl. Phys. Lett. 83, 5316–5218.CrossRefGoogle Scholar
van de Hulst, H. C. 1957 Light Scattering by Small Particles. Dover.CrossRefGoogle Scholar
Issenmann, B., Nicolas, A., Wunenburger, R., Manneville, S. & Delville, J. P. 2008 Deformation of acoustically transparent fluid interfaces by the acoustic radiation pressure. Europhys. Lett. 83, 34002.CrossRefGoogle Scholar
Jacobs, D. T. 1986 Turbidity in the binary fluid mixture methanol-cyclohexane. Phys. Rev. A 33, 26052611.CrossRefGoogle ScholarPubMed
Jean-Jean, B. 1987 Contributions thermique et électrostrictive aux non-linearités optiques géantes observées dans les microémulsions critiques. PhD thesis, Université Bordeaux 1.Google Scholar
Jean-Jean, B., Freysz, E., Ducasse, A. & Pouligny, B. 1988 Thermodiffusive and electrostrictive optical nonlinearities in critical microemulsions. Europhys. Lett. 7 (3), 219224.CrossRefGoogle Scholar
Jean-Jean, B., Freysz, E., Ponton, A., Ducasse, A. & Pouligny, B. 1989 Nonlinear propagation of Gaussian beams in binary critical liquid mixtures. Phys. Rev. A 39 (10), 52685279.CrossRefGoogle ScholarPubMed
Johns, L. E. & Narayanan, R. 2002 Interfacial Instability. Springer.Google Scholar
Kaneta, T., Ishidzu, Y., Mishima, N. & Imasaka, T. 1997 Theory of optical chromatography. Anal. Chem. 69, 27012709.CrossRefGoogle ScholarPubMed
Kazaryan, M. A., Korotkov, N. P. & Zakharov, S. D. 1995 Hydrodynamic flows in suspensions caused by powerful pulse-periodic light beams. Phys. Scr. 52, 678679.CrossRefGoogle Scholar
Kumar, A., Krishnamurty, H. R. & Gopal, E. S. R. 1983 Equilibrium critical phenomena in binary liquid mixtures. Phys. Rep. 98 (2), 57143.CrossRefGoogle Scholar
Kuznetsova, L. A. & Coakley, W. T. 2004 Microparticle concentration in short path length ultrasonic resonators: roles of radiation pressure and acoustic streaming. J. Acoust. Soc. Am. 116, 19561966.CrossRefGoogle Scholar
Landau, L., Lifshitz, E. & Pitayevski, L. 1984 Electrodynamics of Continuous Media, 2nd edn. Butterworth Heinemann.Google Scholar
Marr-Lyon, M. J., Thiessen, D. B. & Marston, P. L. 2001 Passive stabilization of capillary bridges in air with acoustic radiation pressure. Phys. Rev. Lett. pp. 2293–6.CrossRefGoogle Scholar
McIntyre, M. E. 1981 On the ‘wave-momentum’ myth. J. Fluid Mech. 106, 331347.CrossRefGoogle Scholar
Mitani, S. & Sakai, K. 2002 Measurement of ultralow with a laser interface manipulation technique. Phys. Rev. E 66, 031604.CrossRefGoogle ScholarPubMed
Mitani, S. & Sakai, K. 2005 Observation of interfacial tension minima in oil-water-surfactant systems with laser manipulation technique. Faraday Discuss. 129, 141153.CrossRefGoogle ScholarPubMed
Moldover, M. R. 1985 Interfacial tension of fluids near critical points and two-scale-factor universality. Phys. Rev. A 31, 10221033.CrossRefGoogle ScholarPubMed
Monjushiro, H., Takeuchi, K. & Watarai, H. 2002 Anomalous laser photophoretic behavior of photo-absorbing organic droplets in water. Chem. Lett. pp. 788–789.CrossRefGoogle Scholar
Nieto-Vesperinas, M., Chaumet, P. C. & Rahmani, A. 2009 Near-field photonic forces. Phil. Trans. R. Soc. Lond. A 362, 719737.CrossRefGoogle Scholar
Nyborg, W. L. 1997 Acoustic streaming. In Nonlinear Acoustics (ed. Hamilton, M. F. & Blackstock, D. T.), pp. 207232. Academic.Google Scholar
Ornstein, L. S. & Zernike, F. 1914 Accidental deviation of density and opalescence at the critical point of a single substance. Proc. Kon. Ned. Akad. Wetensch. 17, 793806.Google Scholar
Ostrovskaya, G. V. 1988 a Deformation of the free surface of a liquid under the pressure of light. Part I. Theory. Sov. Phys. Tech. Phys. 33 (4), 465468.Google Scholar
Ostrovskaya, G. V. 1988 b Deformation of the free surface of a liquid under the pressure of light. Part II. Experiment. Sov. Phys. Tech. Phys. 33 (4), 468470.Google Scholar
Padgett, M., Molloy, J. & McGloin, D. 2009 Optical Tweezers: Methods and Applications. CRC.Google Scholar
Pfeifer, R. N. C., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. 2007 Momentum of an electromagnetic wave in dielectric media. Rev. Mod. Phys. 79, 11971216.CrossRefGoogle Scholar
Puglielli, V. G. & Ford, N. C. 1970 Turbidity measurements in sf6 near its critical point. Phys. Rev. Lett. 25 (3), 143147.CrossRefGoogle Scholar
Raco, R. J. 1968 Electrically supported column of liquid. Science 160, 311312.CrossRefGoogle ScholarPubMed
Rohatscheck, H. 1985 Direction, magnitude and causes of photophoretic forces. J. Aerosol. Sci. 16, 2942.CrossRefGoogle Scholar
Sakai, K., Mizumo, D. & Takagi, K. 2001 Measurement of liquid surface properties by laser-induced surface deformation spectroscopy. Phys. Rev. E 63, 043602.CrossRefGoogle ScholarPubMed
Sakai, K. & Yamamoto, Y. 2006 Electric field tweezers for characterization of liquid surface. Appl. Phys. Lett. 89, 211911.CrossRefGoogle Scholar
Savchenko, A. Yu., Tabiryan, N. V. & Zel'dovich, B. Ya. 1997 Transfer of momentum and torque from a light beam to a liquid. Phys. Rev. E 56, 47734779.CrossRefGoogle Scholar
Schäffer, E., Thrun-Albrecht, T., Russel, T. P. & Steiner, U. 2000 Electrically induced structure formation and pattern transfer. Nature (London) 403, 874877.CrossRefGoogle ScholarPubMed
Schroll, R. D., Wunenburger, R., Casner, A., Zhang, W. W. & Delville, J.-P. 2007 Liquid transport due to light scattering. Phys. Rev. Lett. 98, 133601.CrossRefGoogle ScholarPubMed
Sengers, J. V. & Levelt-Sengers, J. M. H. 1978 Critical phenomena in classical fluids. In Progress in Liquid Physics (ed. Croxton, C. A.), chap. 4, pp. 103174. Wiley-Interscience.Google Scholar
Simpson, H. J. & Marston, P. L. 1995 Ultrasonic four-wave mixing mediated by an aqueous suspension of microspheres: theoretical steady-state properties. J. Acoust. Soc. Am. 98 (3), 17311741.CrossRefGoogle Scholar
Smith, P. W., Maloney, P. J. & Ashkin, A. 1982 Turbidity measurements in sf6 near its critical point. Opt. Lett. 7 (8), 147149.Google Scholar
Snyder, A. W. & Love, J. D. 1983 Optical Waveguide Theory. Kluwer Academic.Google Scholar
Tan, M. K., Friend, J. R. & Yeo, L. Y. 2009 Interfacial jetting phenomenon induced by focused surface vibrations. Phys. Rev. Lett. 103, 024501.CrossRefGoogle Scholar
Thouvenel-Romans, S., van Saarloos, W. & Steinbock, O. 2004 Silica tubes in chemical gardens: radius selection and its hydrodynamic origin. Europhys. Lett. pp. 42–48.CrossRefGoogle Scholar
Weast, R. C., (ed.) 1971 Handbook of Chemistry and Physics, 52nd edn. The Chemical Rubber Co.Google Scholar
Wohluter, F. K. & Basaran, O. A. 1992 Shapes and stability of pendant and sessile dielectric drops in an electric field. J. Fluid Mech. 235, 481510.CrossRefGoogle Scholar
Wood, R. W. & Loomis, A. L. 1927 The physical and biological effects of high-frequency sound waves of great intensity. Phil. Mag. 4, 417.CrossRefGoogle Scholar
Wunenburger, R., Casner, A. & Delville, J.-P. 2006 a Light-induced deformation and instability of a liquid interface. Part I. Statics. Phys. Rev. E 73, 036314.CrossRefGoogle Scholar
Wunenburger, R., Casner, A. & Delville, J.-P. 2006 b Light-induced deformation and instability of a liquid interface. Part II. Dynamics. Phys. Rev. E 73, 036315.CrossRefGoogle Scholar
Yoshitake, Y., Mitani, S., Sakai, K. & Takagi, K. 2005 Measurement of high viscosity with laser induced surface deformation technique. J. Appl. Phys. 97, 024901.CrossRefGoogle Scholar
Yoshitake, Y., Mitani, S., Sakai, K. & Takagi, K. 2008 Surface tension and elasticity of gel studied with laser-induced surface-deformation spectroscopy. Phys. Rev. E 78, 041405.CrossRefGoogle ScholarPubMed
Zakharov, S. D., Kazaryan, M. A. & Korotkov, N. P. 1994 Shock acceleration of particles in a laser beam. JETP Lett. 60, 322324.Google Scholar
Zeleny, J. 1914 The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Phys. Rev. 3, 6991.CrossRefGoogle Scholar
Zhang, J. Z. & Chang, R. K. 1988 Shape distortion of a single water droplet by laser-induced electrostriction. Opt. Lett. 13, 916918.CrossRefGoogle ScholarPubMed