Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T14:24:06.107Z Has data issue: false hasContentIssue false

Fluid flow and optical flow

Published online by Cambridge University Press:  16 October 2008

TIANSHU LIU
Affiliation:
Department of Mechanical and Aeronautical Engineering, Western Michigan University, Kalamazoo, MI 49008, [email protected]
LIXIN SHEN
Affiliation:
Department of Mathematics, Syracuse University, Syracuse, NY 13244, [email protected]

Abstract

The connection between fluid flow and optical flow is explored in typical flow visualizations to provide a rational foundation for application of the optical flow method to image-based fluid velocity measurements. The projected-motion equations are derived, and the physics-based optical flow equation is given. In general, the optical flow is proportional to the path-averaged velocity of fluid or particles weighted with a relevant field quantity. The variational formulation and the corresponding Euler–Lagrange equation are given for optical flow computation. An error analysis for optical flow computation is provided, which is quantitatively examined by simulations on synthetic grid images. Direct comparisons between the optical flow method and the correlation-based method are made in simulations on synthetic particle images and experiments in a strongly excited turbulent jet.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adrian, R. J. 1991 Particle-imaging techniques for experimental fluid mechanics. Annu. Rev. Fluid Mech. 23, 261304.CrossRefGoogle Scholar
Aubert, G., Deriche, R. & Kornprobst, P. 1999 Computing optical flow via variational techniques. SIAM J. Appl. Maths 60 (1), 156182.CrossRefGoogle Scholar
Barron, J. L., Fleet, D. J. & Beauchemin, S. S. 1994 Performance of optical flow techniques. Int. J. Comp. Vision 12 (1), 4377.CrossRefGoogle Scholar
Brennen, C. E. 2005 Fundamentals of Multiphase Flow, chapter 1. Cambridge University Press.CrossRefGoogle Scholar
Corpetti, T., Heitz, D., Arroyo, G. & Memin, E. 2006 Fluid experimental flow estimation based on an optical flow scheme. Exps. Fluids 40 (1), 8097.CrossRefGoogle Scholar
Corpetti, T., Memin, E. & Perez, P. 2002 Dense estimation of fluid flows. IEEE Trans. Patt. Anal. Mach. Intell. 24 (3), 365380.CrossRefGoogle Scholar
Cuzol, A., Hellier, P. & Memin, E. 2007 A low dimensional fluid motion estimator. Intl J. Comput. Vision 75 (3), 329349.CrossRefGoogle Scholar
Dahm, W. J. A. & Dimotakis, P. E. 1987 Measurements of entrainment and mixing in turbulent jets. AIAA J. 25 (9), 12161223.CrossRefGoogle Scholar
Dahm, W. J. A. & Dimotakis, P. E. 1990 Mixing at large Schmidt number in the self-similar far field of turbulent jets. J. Fluid Mech. 217, 299330.CrossRefGoogle Scholar
Dahm, W. J. A., Su, L. K. & Southerland, K. B. 1992 A scalar imaging velocimetry technique for fully resolved four-dimensional vector velocity field measurements in turbulent flows. Phys. Fluids A 4 (10), 21912206.CrossRefGoogle Scholar
Dracos, T. & Gruen, A. 1998 Videogrammetric methods in velocimetry. Appl. Mech. Rev. 51 (6), 387413.CrossRefGoogle Scholar
Faugeras, O. & Luong, Q.-T. 2001 The Geometry of Multiple Images, chapter 1. The MIT Press.CrossRefGoogle Scholar
Fraser, C. S. 2001 Photogrammetric camera component calibration – A review of analytical techniques. In Calibration and Orientation of Cameras in Computer Vision (ed. Gruen, A. & Huang, T. S.), chapter 4. Springer.Google Scholar
Frederiksen, R. D., Dahm, W. J. A. & Dowling, D. R. 1997 Experimental assessment of fractal scalar similarity in turbulent flows. Part 2. Higher dimensional intersections and nonfractal inclusions. J. Fluid Mech. 338, 89126.CrossRefGoogle Scholar
Goldstein, R. J. & Kuehn, T. H. 1996 Optical systems for flow measurement: Shadowgraph, schlieren, and interferometric techniques. In Fluid Mechanics Measurements, second edition, (ed. Goldstein, R. J.), chapter 7. Taylor & Francis.Google Scholar
Gruen, A. & Huang, T. S. 2001 Calibration and Orientation of Cameras in Computer Vision. Springer.CrossRefGoogle Scholar
Haussecker, H. & Fleet, D. J. 2001 Computing optical flow with physical models of brightness variation. IEEE Trans. Patt. Anal. Mach. Intell. 23 (6), 661673.CrossRefGoogle Scholar
Heas, P., Memin, E., Papadakis, N. & Szantai, A. 2007 Layered estimation of atmospheric mesoscale dynamics from satellite imagery. IEEE Trans. Geosci. Remote Sensing 45 (12), 40874104.CrossRefGoogle Scholar
Horn, B. K. & Schunck, B. G. 1981 Determining optical flow. Artif. Intell. 17 (1–3), 185204.CrossRefGoogle Scholar
Koochesfahani, M. M. & Nocera, D. G. 2007 Molecule Tagging Velocimetry, Handbook of Experimental Fluid Dynamics (ed. Foss, J., Tropea, C. & Yarin, A.), chapter 5.4. Springer.Google Scholar
Liu, T. 2004 Geometric and kinematic aspects of image-based measurements of deformable bodies. AIAA J. 42 (9), 19101920.CrossRefGoogle Scholar
Liu, T., Cattafesta, L. N., Radeztsky, R. H. & Burner, A. W. 2000 Photogrammetry applied to wind tunnel testing. AIAA J. 38 (6), 964971.CrossRefGoogle Scholar
Liu, T., Montefort, J., Woodiga, S., Cone, K. & Shen, L. 2008a Mapping skin friction fields in complex flows using luminescent oil. AIAA Paper 2008-0267.CrossRefGoogle Scholar
Liu, T., Montefort, J., Woodiga, S., Merati, P. & Shen, L. 2008b Global luminescent oil film skin friction meter. AIAA J. 46 (2), 476485.CrossRefGoogle Scholar
Maas, H. G., Gruen, A. & Papantoniou, D. 1993 Particle tracking velocimetry in three-dimensional flows. Exps. Fluids 15 (2), 133146.CrossRefGoogle Scholar
McGlone, J. C. 1989 Analytic data-reduction schemes in non-topographic photogrammetry. In Non-Topographic Photogrammetry, second edition (ed. Karara, H. M.), pp. 3755. American Society for Photogrammetry and Remote Sensing.Google Scholar
Mikhail, E. M., Bethel, J. S. & McGlone, J. C. 2001 Introduction to Modern Photogrammetry. John Wiley & Sons.Google Scholar
Mitiche, A. & Mansouri, A. R. 2004 On convergence of the Horn and Schunck optical-flow estimation method. IEEE Trans. Image Process. 13 (6), 848852.CrossRefGoogle ScholarPubMed
Modest, M. F. 1993 Radiative Heat Transfer, chapter 8. McGraw-Hill.Google Scholar
Pomraning, G. C. 1973 The Equations of Radiation Hydrodynamics. Pergamon.Google Scholar
Quenot, G. M., Pakleza, J. & Kowalewski, T. A. 1998 Particle image velocimetry with optical flow. Exps. Fluids 25, 177189.Google Scholar
Raffel, M., Willert, C. & Kompenhans, J. 1998 Particle Image Velocimetry. Springer.CrossRefGoogle Scholar
Ruhnau, P., Kohlberger, T., Schnorr, C. & Nobach, H. 2005 Variational optical flow estimation for particle image velocimetry. Exps. Fluids 38 (1), 2132.CrossRefGoogle Scholar
Settles, G. S. 2001 Schlieren and Shadowgraph Techniques, chapter 10. Springer.CrossRefGoogle Scholar
Stanislas, M., Okamoto, K., Kahler, C. J. & Westerweel, J. 2005 Main results of the second international PIV challenge. Exps. Fluids 39, 170191.CrossRefGoogle Scholar
Su, L. K. & Dahm, J. A. 1996 a Scalar imaging velocimetry measurements of the velocity gradient tensor field in turbulent flows, I: Assessment of errors. Phys. Fluids 8 (7), 18691882.CrossRefGoogle Scholar
Su, L. K. & Dahm, J. A. 1996 b Scalar imaging velocimetry measurements of the velocity gradient tensor field in turbulent flows, II: Experimental results. Phys. Fluids 8 (7), 18831906.CrossRefGoogle Scholar
Tikhonov, A. N. & Arsenin, V. Y. 1977 Solutions of Ill-Posed Problems, chapter 2. Wiley.Google Scholar
Tokumaru, P. T. & Dimotakis, P. E. 1995 Image correlation velocimetry. Exps. Fluids 19, 115.CrossRefGoogle Scholar
Tsai, R. Y. 1987 A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE J. Robot. Automat. RA-3 (4), 323344.CrossRefGoogle Scholar
Weickert, J. & Schnorr, C. 2001 A theoretical framework for convex regularization in PDE-based computation of image motion. Intl J. Comput. Vision 45 (3), 245264.CrossRefGoogle Scholar
Wildes, R. P., Amabile, M. J., Lanzillotto, A.-M. & Leu, T.-S. 2000 Recovering estimates of fluid flow from image sequence data. Comp. Vision and Image Understanding 80 (2), 246266.CrossRefGoogle Scholar
Yuan, J., Schnorr, C. & Memin, E. 2007 Discrete orthogonal decomposition and variational fluid flow estimation. J. Math. Imaging Vision 28 (1), 6780.CrossRefGoogle Scholar